1
|
Hu B, Yang X, Liu Q, Zhang Y, Jiang D, Jiao H, Yang Y, Xiong Y, Bai X, Hou P. High prevalence and pathogenic potential of Shiga toxin-producing Escherichia coli strains in raw mutton and beef in Shandong, China. Curr Res Food Sci 2022; 5:1596-1602. [PMID: 36161222 PMCID: PMC9493282 DOI: 10.1016/j.crfs.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/09/2022] [Accepted: 08/28/2022] [Indexed: 11/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen that can cause severe human diseases such as hemolytic uremic syndrome (HUS). Human STEC infections are frequently caused through consumption of contaminated foods, especially raw meats. This study aimed to investigate the prevalence of STEC in raw meats and to characterize the meat-derived STEC strains using whole genome sequencing. Our study showed that 26.6% of raw mutton, and 7.5% of raw beef samples were culture-positive for STEC. Thirteen serotypes were identified in 22 meat-derived isolates in this study, including the virulent serotypes O157:H7 and O26:H11. Seven Shiga toxin (Stx) subtypes were found in 22 isolates, of these, stx1c and stx1c + stx2b were predominant. The recently-reported stx2k subtype was found in three mutton-sourced isolates. A number of other virulence genes such as genes encoding intimin (eae), enterohemorrhagic E. coli (EHEC) hemolysin (ehxA), EHEC factor for adherence (efa1), heat-stable enterotoxin 1 (astA), type III secretion system effectors, were detected in meat-derived STEC strains. One mutton-sourced isolate was resistant to three antibiotics, i.e., tetracycline, chloramphenicol, and trimethoprim-sulfamethoxazole. Whole-genome phylogeny indicated the genomic diversity of meat-derived strains in this study. O157:H7 and O26:H11 isolates in this study were phylogenetically grouped together with strains from HUS patients, suggesting their pathogenic potential. To conclude, our study reported high STEC contaminations in retail raw meats, particularly raw mutton, genomic characterization indicated pathogenic potential of meat-derived STEC strains. These findings highlight the critical need for increased monitoring of STEC in retail raw meats in China. High prevalence of Shiga toxin-producing E. coli (STEC) was detected in raw mutton, compared to beef. Virulent serotypes O157:H7 and O26:H11 were found in meat-sourced STEC isolates. Meat-sourced STEC isolates in the same region exhibited genetic diversity.
Collapse
Affiliation(s)
- Bin Hu
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Xi Yang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qian Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuanqing Zhang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Deshui Jiang
- Lanling Center for Disease Control and Prevention, Lanling, 277700, Shandong, China
| | - Hongbo Jiao
- Lanling Center for Disease Control and Prevention, Lanling, 277700, Shandong, China
| | - Ying Yang
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiangning Bai
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, 141 52, Stockholm, Sweden
- Corresponding author. State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Peibin Hou
- Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China
- Corresponding author. Shandong Center for Disease Control and Prevention, Jinan, 250014, Shandong, China.
| |
Collapse
|
2
|
Dong P, Zhu L, Mao Y, Liang R, Niu L, Zhang Y, Luo X. Prevalence and characterization of Escherichia coli O157:H7 from samples along the production line in Chinese beef-processing plants. Food Control 2015. [DOI: 10.1016/j.foodcont.2015.01.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Tan X, Xiao H, Han Y, Hong X, Cui Q, Zhou Z. Encoded protein from ycbR gene of enterohemorrhagic Escherichia coli O157:H7 associated with adherence to HEp-2 cells. Microbiol Res 2014; 169:855-61. [DOI: 10.1016/j.micres.2014.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 01/14/2023]
|
4
|
Molecular characterization of enterohemorrhagic E. coli O157 isolated from animal fecal and food samples in Eastern China. ScientificWorldJournal 2014; 2014:946394. [PMID: 25003156 PMCID: PMC4066714 DOI: 10.1155/2014/946394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/19/2014] [Accepted: 05/19/2014] [Indexed: 01/20/2023] Open
Abstract
Objective. To elucidate the extent of food contamination by enterohemorrhagic Escherichia coli (EHEC) O157 in Eastern China. Methods. A total of 1100 food and animal fecal samples were screened for EHEC O157. Then, molecular characterization of each isolate was determined. Results. EHEC O157 was isolated as follows: pig feces, 4% (20/500); cattle feces, 3.3% (2/60); chicken feces, 1.43% (2/140); pork, 2.14% (3/140), milk, 1.67% (1/60); and chicken meat, 1.67% (1/60). The stx1, stx2, eae, and hlyA genes were present in 26.7% (8/30), 40% (12/30), 63.3% (19/30), and 50% (15/30) of the O157 isolates, respectively. Molecular typing showed that strains from fecal and food samples were clustered into the same molecular typing group. Furthermore, the isolates from pork and pig feces possessed the same characterization as the clinical strains ATCC35150 and ATCC43889. Biofilm formation assays showed that 53.3% of the EHEC O157 isolates could produce biofilm. However, composite analyses showed that biofilm formation of EHEC O157 was independent of genetic background. Conclusions. Animal feces, especially from pigs, serve as reservoirs for food contamination by EHEC O157. Thus, it is important to control contamination by EHEC O157 on farms and in abattoirs to reduce the incidence of foodborne infections in humans.
Collapse
|
5
|
Islam MZ, Musekiwa A, Islam K, Ahmed S, Chowdhury S, Ahad A, Biswas PK. Regional variation in the prevalence of E. coli O157 in cattle: a meta-analysis and meta-regression. PLoS One 2014; 9:e93299. [PMID: 24691253 PMCID: PMC3972218 DOI: 10.1371/journal.pone.0093299] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/03/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Escherichia coli O157 (EcO157) infection has been recognized as an important global public health concern. But information on the prevalence of EcO157 in cattle at the global and at the wider geographical levels is limited, if not absent. This is the first meta-analysis to investigate the point prevalence of EcO157 in cattle at the global level and to explore the factors contributing to variation in prevalence estimates. METHODS Seven electronic databases- CAB Abstracts, PubMed, Biosis Citation Index, Medline, Web of Knowledge, Scirus and Scopus were searched for relevant publications from 1980 to 2012. A random effect meta-analysis model was used to produce the pooled estimates. The potential sources of between study heterogeneity were identified using meta-regression. PRINCIPAL FINDINGS A total of 140 studies consisting 220,427 cattle were included in the meta-analysis. The prevalence estimate of EcO157 in cattle at the global level was 5.68% (95% CI, 5.16-6.20). The random effects pooled prevalence estimates in Africa, Northern America, Oceania, Europe, Asia and Latin America-Caribbean were 31.20% (95% CI, 12.35-50.04), 7.35% (95% CI, 6.44-8.26), 6.85% (95% CI, 2.41-11.29), 5.15% (95% CI, 4.21-6.09), 4.69% (95% CI, 3.05-6.33) and 1.65% (95% CI, 0.77-2.53), respectively. Between studies heterogeneity was evidenced in most regions. World region (p<0.001), type of cattle (p<0.001) and to some extent, specimens (p = 0.074) as well as method of pre-enrichment (p = 0.110), were identified as factors for variation in the prevalence estimates of EcO157 in cattle. CONCLUSION The prevalence of the organism seems to be higher in the African and Northern American regions. The important factors that might have influence in the estimates of EcO157 are type of cattle and kind of screening specimen. Their roles need to be determined and they should be properly handled in any survey to estimate the true prevalence of EcO157.
Collapse
Affiliation(s)
- Md. Zohorul Islam
- Department of Microbiology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Alfred Musekiwa
- School of Mathematics, Statistics and Computer Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Kamrul Islam
- Department of Microbiology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Shahana Ahmed
- Chittagong Veterinary Laboratory, Chittagong, Bangladesh
| | - Sharmin Chowdhury
- Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Abdul Ahad
- Department of Microbiology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Paritosh Kumar Biswas
- Department of Microbiology, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| |
Collapse
|
6
|
Prevalence, genetic characterization and virulence genes of sorbitol-fermenting Escherichia coli O157:H- and E. coli O157:H7 isolated from retail beef. Int J Food Microbiol 2013; 165:295-301. [PMID: 23803571 DOI: 10.1016/j.ijfoodmicro.2013.05.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 05/01/2013] [Accepted: 05/24/2013] [Indexed: 11/21/2022]
Abstract
Sorbitol-fermenting (SF) Escherichia coli O157:H- strains have emerged as important pathogens and have been associated with a higher incidence of progression to hemolytic-uremic syndrome (HUS) than non-sorbitol fermenting (NSF) E. coli O157:H7. The present study was carried out to determine the prevalence of SF E. coli O157:H- and NSF E. coli O157:H7 strains in retail beef products in Mansoura, Egypt. The contamination rates with rfbEO157-positive E. coli O157 strains were 26.7% (8/30), 10% (3/30) and 3.7% (1/27) in ground beef, beef burger, and fresh beef samples, respectively with an overall mean of 13.8% (12/87) among all meat products tested. SF E. coli O157:H- were the most dominant among the isolated O157 strains. Of the fifteen O157 strains isolated, 11 (73.3%) were SF E. coli O157:H-, while the remaining 4 (26.7%) were NSF E. coli O157:H7. The 11 SF O157H- strains were genetically positive for sfpA gene. Restriction fragment length polymorphism (RFLP) analysis for fliC gene demonstrated a similar pattern for both SF and NSF O157 isolates. PCR assays verified the existence of stx1 gene in 7 (46.7%) and stx2 gene in 13 (86.7%) of the 15 O157 strains isolated. Unexpectedly, two of the 15 O157 strains isolated were negative for Shiga toxin genes. The eae gene was identified in all of the 15 O157 strains except in one NSF O157:H7 strain. EHEC-hlyA gene was detected in 14 (93.3%) of the 15 O157 isolates, nonetheless only 11 strains showed enterohemolytic phenotype on blood agar. A combination of the four virulence genes, stx1, stx2, eae and EHEC-hlyA were detected in 7 (46.7%) strains, while six (40%) strains were positive for stx2, eae and hlyA genes. This is the first record for isolation of E. coli O157: H- in Egypt as well as in the African continent.
Collapse
|
7
|
Li MC, Wang F, Li F. Identification and molecular characterization of antimicrobial-resistant shiga toxin-producing Escherichia coli isolated from retail meat products. Foodborne Pathog Dis 2011; 8:489-93. [PMID: 21453117 DOI: 10.1089/fpd.2010.0688] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Ten (2.7%) Shiga toxin-producing Escherichia coli (STEC) were isolated from 370 samples of raw minced beef, mutton, pork, and chicken from the Jilin region of China; and additional 10 E. coli O157:H7 isolates were previously isolated from different Jilin regions. Seventeen of the isolates were multiresistant, exhibiting resistance to ampicillin, ciprofloxacin, tetracycline, sulfamethoxazole-trimethoprim, gentamycin, and streptomycin. Class 1 integrons were detected in nine (45.0%) of the STEC isolates and consisted of serogroups O157, O62, O113, O149, and O70. Integrons containing amplicons of a 0.5-1.5 or 1.0 kb gene cassette were found in seven (77.8%) of the integron-containing isolates. Sequencing analysis revealed that these gene cassettes encode genes conferring resistance to trimethoprim (dfrA1) and streptomycin (aadA1). The 0.5 kb cassette described here was found to encode a putative transporter peptide in the STEC. Seventeen isolates contained plasmids with different bands, and transfer by conjugation between strains of E. coli demonstrated that class 1 integrons located on mobile plasmids could contribute to the emergence and dissemination of antimicrobial resistance to ampicillin, gentamycin, streptomycin, and sulfamethoxazole-trimethoprim amongst STEC. These data revealed the high prevalence of antimicrobial-resistant STEC isolates in Jilin's surrounding regions, providing important and useful surveillance information reflecting antimicrobial selection pressure.
Collapse
Affiliation(s)
- Ming-Cheng Li
- Department of Pathogenobiology, Norman Bethune College of Medical Sciences, Jilin University, Changchun, Jilin, People's Republic of China
| | | | | |
Collapse
|
8
|
Koitabashi T, Cui S, Kamruzzaman M, Nishibuchi M. Isolation and characterization of the Shiga toxin gene (stx)-bearing Escherichia coli O157 and non-O157 from retail meats in Shandong Province, China, and characterization of the O157-derived stx2 phages. J Food Prot 2008; 71:706-13. [PMID: 18468023 DOI: 10.4315/0362-028x-71.4.706] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Infection by Shiga toxin (Stx)-producing Escherichia coli of non-O157 and O157 serotypes are rare in China, but infection by O157 serotype was found in Shandong Province and three other provinces in China. To understand the reason for these rare infections and to determine the safety of retail meats in Shandong Province, we examined the distribution of Shiga toxin gene (stx)-bearing E. coli in retail meats and characterized the isolated stx-bearing strains. We used hybridization with DNA probes and isolated stx1- and/or stx2-positive E. coli from 31 (58%) of 53 retail meat samples, with beef showing the highest frequency (68%). Of 42 stx-positive isolates, none belonged to O157. Using the O157-specific immunomagnetic bead technique, we isolated E. coli O157 carrying the eae and stx2 genes from eight beef samples (26%). These strains produced little or no Stx2 and carried a unique q gene. Replication of the stx2 phages was detected in these strains, whereas stx2 phage replication was not detected in our previous study in which we examined similar stx2-bearing E. coli O157 strains from other Asian countries. Analysis of E. coli C600 lysogenized with the stx2 phages found in this study suggests that the lack of Stx2 production is due to changes in non-q gene region(s) of the phage genome or chromosomal mutation(s) in the host. Our data and reports by other workers suggest it is necessary to determine if various stx2-bearing E. coli O157 strains producing Stx2 to varying degrees are distributed in meats in various locations in China.
Collapse
Affiliation(s)
- Tsutomu Koitabashi
- Qingdao Chengyu Research Institute of Food-Safety, Chengyang District, Qingdao, Shandong Province, China
| | | | | | | |
Collapse
|
9
|
Serotypes, virulence genes and intimin types of Shiga toxin (verocytotoxin)-producing Escherichia coli isolates from minced beef in Lugo (Spain) from 1995 through 2003. BMC Microbiol 2007; 7:13. [PMID: 17331254 PMCID: PMC1810539 DOI: 10.1186/1471-2180-7-13] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 03/01/2007] [Indexed: 11/12/2022] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) have emerged as pathogens that can cause food-borne infections and severe and potentially fatal illnesses in humans, such as haemorrhagic colitis (HC) and haemolytic uraemic syndrome (HUS). In Spain, like in many other countries, STEC strains have been frequently isolated from ruminants, and represent a significant cause of sporadic cases of human infection. In view of the lack of data on STEC isolated from food in Spain, the objectives of this study were to determine the level of microbiological contamination and the prevalence of STEC O157:H7 and non-O157 in a large sampling of minced beef collected from 30 local stores in Lugo city between 1995 and 2003. Also to establish if those STEC isolated from food possessed the same virulence profiles as STEC strains causing human infections. Results STEC were detected in 95 (12%) of the 785 minced beef samples tested. STEC O157:H7 was isolated from eight (1.0%) samples and non-O157 STEC from 90 (11%) samples. Ninety-six STEC isolates were further characterized by PCR and serotyping. PCR showed that 28 (29%) isolates carried stx1 genes, 49 (51%) possessed stx2 genes, and 19 (20%) both stx1 and stx2. Enterohemolysin (ehxA) and intimin (eae) virulence genes were detected in 43 (45%) and in 25 (26%) of the isolates, respectively. Typing of the eae variants detected four types: γ1 (nine isolates), β1 (eight isolates), ε1 (three isolates), and θ (two isolates). The majority (68%) of STEC isolates belonged to serotypes previously detected in human STEC and 38% to serotypes associated with STEC isolated from patients with HUS. Ten new serotypes not previously described in raw beef products were also detected. The highly virulent seropathotypes O26:H11 stx1 eae-β1, O157:H7 stx1stx2 eae-γ1 and O157:H7 stx2eae-γ1, which are the most frequently observed among STEC causing human infections in Spain, were detected in 10 of the 96 STEC isolates. Furthermore, phage typing of STEC O157:H7 isolates showed that the majority (seven of eight isolates) belonged to the main phage types previously detected in STEC O157:H7 strains associated with severe human illnesses. Conclusion The results of this study do not differ greatly from those reported in other countries with regard to prevalence of O157 and non-O157 STEC in minced beef. As we suspected, serotypes different from O157:H7 also play an important role in food contamination in Spain, including the highly virulent seropathotype O26:H11 stx1 eae-β1. Thus, our data confirm minced beef in the city of Lugo as vehicles of highly pathogenic STEC. This requires that control measures to be introduced and implemented to increase the safety of minced beef.
Collapse
|
10
|
Prevalence of Shiga toxin-producing Escherichia coli in beef. Meat Sci 2005; 71:676-89. [DOI: 10.1016/j.meatsci.2005.05.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/12/2005] [Accepted: 05/12/2005] [Indexed: 01/28/2023]
|
11
|
Abstract
A large number of Shiga toxin-producing Escherichia coli (STEC) strains have caused major outbreaks and sporadic cases of human illnesses, including mild diarrhea, bloody diarrhea, hemorrhagic colitis, and the life-threatening hemolytic uremic syndrome. These illnesses have been traced to both O157 and non-O157 STEC. In a large number of STEC-associated outbreaks, the infections were attributed to consumption of ground beef or other beef products contaminated with cattle feces. Thus, beef cattle are considered reservoirs of STEC and can pose significant health risks to humans. The global nature of the human food supply suggests that safety concerns with beef will continue and the challenges facing the beef industry will increase at the production and processing levels. To be prepared to address these concerns and challenges, it is critical to assess the role of beef cattle in human STEC infections. In this review, published reports on STEC in beef cattle were evaluated to achieve the following specific objectives: (i) assess the prevalence of STEC in beef cattle, and (ii) determine the potential health risks of STEC strains from beef cattle. The latter objective is critically important because many beef STEC isolates are highly virulent. Global testing of beef cattle feces revealed wide ranges of prevalence rates for O157 STEC (i.e., 0.2 to 27.8%) and non-O157 STEC (i.e., 2.1 to 70.1%). Of the 261 STEC serotypes found in beef cattle, 44 cause hemolytic uremic syndrome and 37 cause other illnesses.
Collapse
Affiliation(s)
- Hussein S Hussein
- Department of Animal Biotechnology, Mail Stop 202, University of Nevada-Reno, Reno, Nevada 89557, USA.
| | | |
Collapse
|
12
|
Jordan DM, Booher SL, Moon HW. Escherichia coli O157:H7 does not require intimin to persist in pigs. Infect Immun 2005; 73:1865-7. [PMID: 15731090 PMCID: PMC1064961 DOI: 10.1128/iai.73.3.1865-1867.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Dianna M Jordan
- Department of Veterinary Pathology, Iowa State University, Ames, Iowa, IA 50011, USA.
| | | | | |
Collapse
|
13
|
Adwan GM, Adwan KM. Isolation of shiga toxigenic Escherichia coli from raw beef in Palestine. Int J Food Microbiol 2004; 97:81-4. [PMID: 15527921 DOI: 10.1016/j.ijfoodmicro.2004.03.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2003] [Revised: 03/23/2004] [Accepted: 03/23/2004] [Indexed: 11/15/2022]
Abstract
Shiga toxigenic Escherichia coli (STEC) isolated from raw beef samples in northern Palestine during a 1-year period were characterized for virulence genes by a polymerase chain reaction (PCR) assay and screened for their antibiotic resistance. STEC was identified in 44 (14.7%) of 300 raw beef samples. Twelve (27.3%) of the STEC isolates were serotype O157. Nine of those were isolated during summer. The majority of STEC isolates (70.5%) harbored both stx1 and stx2 genes, while the others harbored either stx1 or stx2. High levels of resistance against different antimicrobial agents were detected. Resistance to at least three drugs was found in 55% of the isolates.
Collapse
Affiliation(s)
- Ghaleb M Adwan
- Department of Biology and Biotechnology, An-Najah N. University, P.O. Box (7)-Nablus, Palestine, Palestine Territory, Israel.
| | | |
Collapse
|