1
|
Araki M, Noguchi S, Kubo Y, Yasuda A, Koh M, Otsuka H, Yokosuka M, Soeta S. Expression of type VI collagen α3 chain in canine mammary carcinomas. Res Vet Sci 2023; 159:171-182. [PMID: 37148736 DOI: 10.1016/j.rvsc.2023.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/08/2023]
Abstract
This study aimed to investigate the expression of type VI collagen α3 chain (COL6a3) in neoplastic cells of canine mammary gland carcinomas (CMGCs) using immunohistochemistry (IHC) and to evaluate the association between COL6a3 expression and tumor histological features, histological grades, and the differentiation status of neoplastic epithelial cells. COL6a3 expression in carcinoma cells was significantly associated with histologically low malignancy and low mitotic indices. In addition, COL6a3+ carcinoma cells were more frequently detected in simple carcinomas (tubular and tubulopapillary types) than in solid carcinomas. These findings indicate that reduced expression of COL6a3 in carcinoma cells contributes to the malignant phenotype in CMGCs. We also showed that COL6a3 expression in the carcinoma cells was more frequently detected in CK19+/CD49f + and/or CK19+/CK5+ tumors. In addition, COL6a3+/CK19+/CD49f + and COL6a3+/CK19+/CK5+ tumors consisted of CK19+/CD49f + and CK19+/CD49f- cells, and CK19+/CK5+ and CK19+/CK5- cells, respectively. Most of these tumors more frequently expressed GATA3, but not Notch1. These results indicate that COL6a3 is expressed in CMGCs containing both luminal progenitor-like and mature luminal-like cells and showing differentiation ability into mature luminal cells. It is possible that COL6 may be involved in the differentiation of luminal progenitor-like carcinoma cells into mature luminal-like carcinoma cells in CMGCs, which may suppresses the development of malignant phenotypes in CMGCs.
Collapse
Affiliation(s)
- Mami Araki
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, 1-1-5, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Kubo
- Veterinary Medical Teaching Hospital, Attached Facility, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Akiko Yasuda
- Veterinary Medical Teaching Hospital, Attached Facility, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Miki Koh
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Hirotada Otsuka
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Makoto Yokosuka
- Laboratory of Comparative and Behavioral Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1, Kyonan-cho, Musashino-shi, Tokyo, Japan.
| |
Collapse
|
2
|
Araki M, Noguchi S, Kubo Y, Yasuda A, Koh M, Otsuka H, Yokosuka M, Soeta S. Expression of receptor-type tumour endothelial marker 8 in carcinoma cells showing luminal progenitor-like phenotypes in canine mammary gland carcinomas. J Comp Pathol 2023; 200:35-45. [PMID: 36641985 DOI: 10.1016/j.jcpa.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/05/2022] [Accepted: 11/05/2022] [Indexed: 01/15/2023]
Abstract
This study aimed to investigate the expression of receptor-type tumour endothelial marker 8 (TEM8RT) in canine mammary gland carcinomas (CMGCs) using immunohistochemistry and to evaluate the association between carcinoma cell TEM8RT expression and tumour histological features, histological grades and the differentiation status of neoplastic epithelial cells. TEM8RT expression was more frequently detected in simple carcinomas (tubular and tubulopapillary) than in solid carcinomas, and it was significantly correlated with histological grade Ⅰ tumours and a low mitotic index. Additionally, TEM8RT+ carcinoma cells were more frequently found in CMGCs showing luminal progenitor-like phenotypes, such as Notch1+, CK19+/CK5+/CD49f+ and CK19+/CK5-/CD49f+. Double-labelling immunofluorescence detection techniques confirmed that most TEM8RT+ carcinoma cells expressed CD49f, Notch1 and CK19. However, TEM8RT immunoreactivity was not found in carcinoma cells expressing GATA3, which upregulates mature luminal cell differentiation. Furthermore, TEM8RT+ carcinoma cells were detected in a few CMGCs showing basal/stem cell-like phenotypes such as CK19-/CK5+/CD49f+ and CK19-/CK5+/CD49f-. These findings indicate that TEM8RT is expressed in luminal progenitor-like carcinoma cells in CMGCs. Since TEM8 enhances self-renewal in human mammary stem/progenitor cells, it also may be involved in maintenance of luminal progenitor-like carcinoma cells, resulting in prevention of their transition to basal/stem cell-like carcinoma cells and development of less malignant CMGCs. Therefore, TEM8RT may be useful for indicating prognostic outcomes and identifying the possible ontogeny of carcinoma cells in mammary gland tumours.
Collapse
Affiliation(s)
- Mami Araki
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Syunya Noguchi
- Department of Molecular Medicine and Anatomy, Nippon Medical School, Sendagi, Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Kubo
- Veterinary Medical Teaching Hospital, Attached Facility, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Akiko Yasuda
- Veterinary Medical Teaching Hospital, Attached Facility, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Miki Koh
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Hirotada Otsuka
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Makoto Yokosuka
- Laboratory of Comparative and Behavioral Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan.
| |
Collapse
|
3
|
Kohara Y, Kitazawa S, Kitazawa R, Haraguchi R, Arai K, Amasaki H, Soeta S. Localization of DLL1- and NICD-positive osteoblasts in cortical bone during postnatal growth in rats. Biochem Biophys Res Commun 2020; 529:186-190. [PMID: 32703409 DOI: 10.1016/j.bbrc.2020.06.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022]
Abstract
The long bone midshaft expands by forming primary osteons at the periosteal surface of cortical bone in humans and rodents. Osteoblastic bone formation in the vascular cavity in the center of primary osteons is delayed during cortical bone development. The mechanisms of the formation of primary osteons is not fully understood, however. Focusing on NOTCH1 signaling, an inhibitory signaling on osteoblastic bone formation, our immunohistochemical analysis revealed Delta like1 (DLL1), a ligand of NOTCH1, and the NOTCH1 intracellular domain (NICD, an activated form of NOTCH1) immunoreactivity, in the cuboidal osteoblasts lining the bone surface in the vascular cavity of primary osteons during postnatal growth in rats. Interestingly, five days after treatment of primary osteoblasts with ascorbic acid and β glycerophosphate, protein levels of both DLL1 and NICD increased transiently, indicating that DLL1 activates NOTCH1 in primary cultured osteoblasts. Thus, the results imply that DLL1-NOTCH1 signaling in osteoblasts is associated with primary osteonal bone formation.
Collapse
Affiliation(s)
- Yukihiro Kohara
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan; Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino City, Tokyo, 180-8602, Japan.
| | - Sohei Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Riko Kitazawa
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan; Division of Diagnostic Pathology, Ehime University Hospital, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Ryuma Haraguchi
- Department of Molecular Pathology, Ehime University Graduate School of Medicine, Shitsukawa, Toon City, Ehime, 791-0295, Japan
| | - Kiyotaka Arai
- Department of Veterinary Surgery, Okayama University of Science, 1-3 Ikoinooka, Imabari City, Ehime, 794-8555, Japan
| | - Hajime Amasaki
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino City, Tokyo, 180-8602, Japan
| | - Satoshi Soeta
- Laboratory of Veterinary Anatomy, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino City, Tokyo, 180-8602, Japan
| |
Collapse
|
4
|
Noguchi S, Kubo Y, Araki M, Koh M, Hamamoto Y, Tamura K, Otsuka H, Yasuda A, Azakami D, Michishita M, Soeta S. Big Insulin-like Growth Factor 2-Producing Tumor in a Hypoglycemic Dog. Vet Pathol 2020; 57:432-436. [PMID: 32148182 DOI: 10.1177/0300985820906897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A 10-year-old female Papillon dog that had previously developed a mammary tumor was admitted for treatment of a hypoglycemic attack. Blood examination showed severe hypoglycemia and decreased blood insulin concentration. Computed tomography indicated multiple tumors in the cranial and caudal lobes of the right lung. These tumors were resected surgically and diagnosed as pulmonary adenocarcinomas by histopathologic examination. Hypoglycemia was temporarily improved after the resection, but a hypoglycemic event occurred 2 months after the surgery. Immunohistochemistry of the tumor demonstrated the expression of insulin-like growth factor 2 in tumor cells. Western blot analysis revealed the expression of high-molecular-weight (big)-insulin-like growth factor 2 in the tumor region. Insulin-like growth factor 2 mRNA expression was also confirmed in the tumor using reverse transcription-polymerase chain reaction. These findings indicate the diagnosis of non-islet cell tumor-induced hypoglycemia caused by big-insulin-like growth factor 2 produced by the tumor in the dog. This report provides information on differentiating tumors that cause paraneoplastic hypoglycemia.
Collapse
Affiliation(s)
- Syunya Noguchi
- Department of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yoshiaki Kubo
- Veterinary Medical Teaching Hospital, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Mami Araki
- Department of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Miki Koh
- Department of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuji Hamamoto
- Veterinary Medical Teaching Hospital, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kyoichi Tamura
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hirotada Otsuka
- Department of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Akiko Yasuda
- Veterinary Medical Teaching Hospital, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Daigo Azakami
- Department of Veterinary Nursing, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Masaki Michishita
- Department of Veterinary Pathology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Satoshi Soeta
- Department of Veterinary Anatomy, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
5
|
Expression of Tumour Endothelial Marker 8 in Canine Mammary Gland Tumour Cells. J Comp Pathol 2019; 173:30-40. [PMID: 31812171 DOI: 10.1016/j.jcpa.2019.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 11/21/2022]
Abstract
The aim of this study was to investigate the expression of tumour endothelial marker 8 (TEM8) in canine mammary gland tumours (MGTs) by immunohistochemistry and to evaluate the association between tumour cell TEM8 expression and tumour histological features, histological grades and expression of luminal and basal/myoepithelial cell markers. TEM8 expression was detected in >60 % of neoplastic epithelial cells in all simple adenomas (n = 25), simple carcinomas (n = 43) and invasive micropapillary carcinomas (n = 5) studied. Six of the 18 solid carcinomas studied showed TEM8 expression in >60% of carcinoma cells present in solid structures and in 12 of the 18 solid carcinomas, <30% of the luminal structure-forming carcinoma cells showed TEM8 expression. TEM8 expression in the neoplastic cells was not associated with histological malignancy in canine MGTs. TEM8+ tumour cells frequently showed the luminal-like phenotype cytokeratin (CK)19+/p63-/α-smooth muscle actin (SMA)-, while most TEM8- tumour cells exhibited the basal-like phenotype CK19-/p63+/αSMA-. These findings indicate that TEM8 may be involved in maintaining the characteristics of luminal cells in canine MGTs and that TEM8 would be useful in identifying the type of neoplastic epithelial cell in MGTs.
Collapse
|
6
|
Blumer MJF, Longato S, Fritsch H. Localization of tartrate-resistant acid phosphatase (TRAP), membrane type-1 matrix metalloproteinases (MT1-MMP) and macrophages during early endochondral bone formation. J Anat 2008; 213:431-41. [PMID: 18643874 DOI: 10.1111/j.1469-7580.2008.00958.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Endochondral bone formation, the process by which most parts of our skeleton evolve, leads to the establishment of the diaphyseal primary (POC) and epiphyseal secondary ossification centre (SOC) in long bones. An essential event for the development of the SOC is the early generation of vascularized cartilage canals that requires the proteolytic cleavage of the cartilaginous matrix. This in turn will allow the canals to grow into the epiphysis. In the present study we therefore initially investigated which enzymes and types of cells are involved in this process. We have chosen the mouse as an animal model and focused our studies on the distal part of the femur during early stages after birth. The formation of the cartilage canals was promoted by tartrate-resistant acid phosphatase (TRAP) and membrane type-1 matrix metalloproteinases (MT1-MMP). In addition, macrophages and cells containing numerous lysosomes contributed to the establishment of the canals and enabled their further advancement into the epiphysis. As development continued, the SOC was formed, and in mice aged 10 days a distinct layer of type I collagen (= osteoid) was laid down onto the cartilage scaffold. The events leading to the establishment of the SOC were compared with those of the POC. Basically these processes were quite similar, and in both ossification centers, TRAP-positive chondroclasts resorbed the cartilage matrix. However, occasionally co-expression of TRAP and MT1-MMP was noted in a small subpopulation of this cell type. Furthermore, numerous osteoblasts expressed MT1-MMP from the start of endochondral ossification, whereas others did not. In osteocytogenesis, MT1-MMP has been shown to be critical for the establishment of the cytoplasmic processes mediating the communication between osteocytes and bone-lining cells. Considering the well-known fact that not all osteoblasts transform into osteocytes, and in accordance with the present data, we suggest that MT1-MMP is needed at the very beginning of osteocytogenesis and may additionally determine whether an osteoblast further differentiates into an osteocyte.
Collapse
Affiliation(s)
- Michael J F Blumer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Innsbruck Medical University, Innsbruck, Austria.
| | | | | |
Collapse
|
7
|
Blumer MJF, Longato S, Fritsch H. Structure, formation and role of cartilage canals in the developing bone. Ann Anat 2008; 190:305-15. [PMID: 18602255 DOI: 10.1016/j.aanat.2008.02.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 02/14/2008] [Indexed: 11/29/2022]
Abstract
In the long bones, endochondral bone formation proceeds via the development of a diaphyseal primary ossification centre (POC) and an epiphyseal secondary ossification centre (SOC). The growth plate, the essential structure for longitudinal bone growth, is located between these two sites of ossification. Basically, endochondral bone development depends upon neovascularization, and the early generation of vascularized cartilage canals is an initial event, clearly preceding the formation of the SOC. These canals form a discrete network within the cartilaginous epiphysis giving rise to the formation of the marrow space followed by the establishment of the SOC. These processes require excavation of the provisional cartilaginous matrix which is eventually replaced by permanent bone matrix. In this review, we discuss the formation of the cartilage canals and the importance of their cells in the ossification process. Special attention is paid to the enzymes required in disintegration of the cartilaginous matrix which, in turn, will allow for the invasion of new vessels. Furthermore, we show that the mesenchymal cells of the cartilage canals express bone-relevant proteins and transform into osteocytes. We conclude that the canals are essential for normal epiphyseal bone development, the establishment of the growth plate and ultimately longitudinal growth of the bones.
Collapse
Affiliation(s)
- Michael J F Blumer
- Department of Anatomy, Histology and Embryology, Division of Clinical and Functional Anatomy, Innsbruck Medical University, Müllerstrasse 59, Innsbruck, Austria.
| | | | | |
Collapse
|