1
|
Dwużnik-Szarek D, Beliniak A, Malaszewicz W, Krauze-Gryz D, Gryz J, Jasińska KD, Wężyk D, Bajer A. Pathogens detected in ticks (Ixodes ricinus) feeding on red squirrels (Sciurus vulgaris) from city parks in Warsaw. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 93:677-699. [PMID: 39249583 PMCID: PMC11464548 DOI: 10.1007/s10493-024-00955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]
Abstract
The European red squirrel (Sciurus vulgaris) is a common host for Ixodes ricinus ticks in urban and rural habitats, however, studies on ticks and tick-borne pathogens (TBPs) of squirrels have not been conducted in Poland yet. Thus, the aims of the current study were to assess and compare the prevalence and abundance of ticks on red squirrels trapped at two sites in the Warsaw area (in an urban forest reserve and an urban park) and using molecular tools, to assess the genetic diversity of three pathogens (Borrelia burgdorferi sensu lato, Rickettsia and Babesia spp.) in I. ricinus ticks collected from squirrels. For the detection of Rickettsia spp. a 750 bp long fragment of the citrate synthase gltA gene was amplified; for B. burgdorferi s.l. 132f/905r and 220f/824r primers were used to amplify the bacterial flaB gene fragments (774 and 605 bp, respectively) and for Babesia spp., a 550 bpfragment of 18S rRNA gene was amplified. In total, 91 red squirrels were examined for ticks. There were differences in tick prevalence and mean abundance of infestation in squirrels from the urban forest reserve and urban park. Three species of B. burgdorferi s.l., Rickettsia spp., and Babesia microti were detected in ticks removed from the squirrels. Our results broaden knowledge of S. vulgaris as an important host for immature I. ricinus stages and support the hypothesis that red squirrels act as a reservoir of B. burgdorferi. Moreover, we conclude that red squirrels may also play a role in facilitating the circulation of other pathogens causing serious risk of tick-borne diseases in natural and urban areas.
Collapse
Affiliation(s)
- Dorota Dwużnik-Szarek
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland.
| | - Agata Beliniak
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Wiktoria Malaszewicz
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Dagny Krauze-Gryz
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Jakub Gryz
- Department of Forest Ecology, Forest Research Institute, Sękocin Stary, Braci Leśnej 3, Raszyn, 05-090, Poland
| | - Karolina D Jasińska
- Department of Forest Zoology and Wildlife Management, Warsaw University of Life Sciences WULS-SGGW, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Dagmara Wężyk
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| | - Anna Bajer
- Department of Eco-Epidemiology of Parasitic Diseases, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warsaw, 02-096, Poland
| |
Collapse
|
2
|
Zamoto-Niikura A, Saigo A, Sato M, Kobayashi H, Sasaki M, Nakao M, Suzuki T, Morikawa S. The presence of Ixodes pavlovskyi and I. pavlovskyi-borne microorganisms in Rishiri Island: an ecological survey. mSphere 2023; 8:e0021323. [PMID: 37930050 PMCID: PMC10871164 DOI: 10.1128/msphere.00213-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Understanding the ecology of ticks and tick-borne microorganisms is important to assess the risk of emerging tick-borne diseases. Despite the fact that the Ixodes pavlovskyi tick bites humans, we lack information including population genetics and the reason for the inadequate distribution in Japan. A 5-year survey revealed that Rishiri Island, the main stopover in the East Asian Flyway of wild birds in the northern Sea of Japan, was a refuge of I. pavlovskyi. The I. pavlovskyi included two haplogroups, which were supposed to diverge a long time before the island separated from the continent and Hokkaido mainland. The detection of microorganisms from wildlife revealed that wild birds and rodents play a role in diffusion and settlement, respectively, of not only I. pavlovskyi but also I. pavlovskyi-borne microorganisms including Candidatus Ehrlichia khabarensis and Babesia microti US lineage. Various island-specific factors control I. pavlovskyi dominance and tick-borne pathogen maintenance. The results may enable us to explain how tick-borne infectious microorganisms are transported.
Collapse
Affiliation(s)
- Aya Zamoto-Niikura
- Management Department of Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akiko Saigo
- Management Department of Biosafety, Laboratory Animal and Pathogen Bank, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Hirotaka Kobayashi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Morikawa
- Department of Veterinary Medicine, Okayama University of Science, Okayama, Japan
| |
Collapse
|
3
|
Molecular detection of Babesia spp. and Rickettsia spp. in coatis (Nasua nasua) and associated ticks from midwestern Brazil. Parasitol Res 2023; 122:1151-1158. [PMID: 36890298 DOI: 10.1007/s00436-023-07815-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/02/2023] [Indexed: 03/10/2023]
Abstract
Procyonids are reservoirs of many zoonotic infectious diseases, including tick-borne pathogens. The role of coatis (Nasua nasua) in the epidemiology of piroplasmids and Rickettsia has not been fully addressed in Brazil. To molecularly study these agents in coatis and associated ticks, animals were sampled in two urban areas in Midwestern Brazil. Blood (n = 163) and tick (n = 248) DNA samples were screened by PCR assays targeting the 18S rRNA and gltA genes of piroplasmids and Rickettsia spp., respectively. Positive samples were further molecularly tested targeting cox-1, cox-3, β-tubulin, cytB, and hsp70 (piroplasmid) and ompA, ompB, and htrA 17-kDa (Rickettsia spp.) genes, sequenced and phylogenetically analyzed. All coatis' blood samples were negative for piroplasmids, whereas five pools of ticks (2%) were positive for two different sequences of Babesia spp.. The first from Amblyomma sculptum nymphs was close (i.e., ≥ 99% nucleotide identity) to a Babesia sp. previously found in capybaras (Hydrochoerus hydrochaeris); the second from Amblyomma dubitatum nymphs and Amblyomma spp. larvae was identical (100% nucleotide identity) to a Babesia sp. detected in opossums (Didelphis albiventris) and associated ticks. Four samples (0.8%) were positive by PCR to two different Rickettsia spp. sequences, being the first from Amblyomma sp. larva identical to Rickettsia belli and the second from A. dubitatum nymph identical to Rickettsia species from Spotted Fever Group (SFG). The detection of piroplasmids and SFG Rickettsia sp. highlights the importance of Amblyomma spp. in the maintenance of tick-borne agents in urban parks where humans and wild and domestic animals are living in sympatry.
Collapse
|
4
|
Cruciani D, Crotti S, Paoloni D, La Morgia V, Felici A, Papa P, Cosseddu GM, Moscati L, Gobbi P. Health Status of the Eastern Grey Squirrel ( Sciurus carolinensis) Population in Umbria: Results of the LIFE Project 'U-SAVEREDS'. Animals (Basel) 2022; 12:ani12202741. [PMID: 36290127 PMCID: PMC9597752 DOI: 10.3390/ani12202741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Simple Summary Invasive alien species are non-native species introduced deliberately or unintentionally beyond their past or present natural distribution, and their introduction and spread threatens local biological diversity. The Eastern grey squirrel is native to North America and was introduced to the British Islands, Italy, and South Africa. Around the year 2000, a new population of grey squirrels was recorded in Perugia, central Italy, where the species populated an area of approximately 50 km2, both in woodland and urban areas. The Eastern grey squirrel represents a huge threat to the conservation of the native Eurasian red squirrel when the two species coexist. Moreover, given their confident behaviour with humans, the non-native squirrels can negatively impact public health. The U-SAVEREDS Project was set up for Eurasian red squirrel conservation in Umbria through the eradication of the alien species and it also provided information on the health status of the Eastern grey squirrel to identify any infectious agents. The recovery of zoonotic pathogens allowed to assess the Eastern grey squirrel’s impact on human and domestic and wild animals’ health, provide helpful feedback for the management and eradication procedures, and raise public awareness through environmental education. Abstract The introduction of the Eastern grey squirrel (Sciurus carolinensis) in Europe is one of the best-known cases of invasive alien species (IAS) colonisation, that poses a severe risk to the conservation of biodiversity. In 2003, it was released in a private wildlife park near the city of Perugia (Italy), where it is replacing the native Eurasian red squirrel (Sciurus vulgaris). The LIFE13 BIO/IT/000204 Project (U-SAVEREDS) was set up for the Sciurus vulgaris conservation in Umbria through an eradication campaign of grey squirrels. One hundred and fifty-four animals were analysed for bacteriological, mycological, virological, and serological investigations (C4 action). Sanitary screening showed that Sciurus carolinensis is a dermatophyte carrier, and therefore, it could cause public health issues for humans, considering its confident behaviour. Moreover, it has been marginally responsible for the spreading of Candida albicans, Coxiella burnetii, and Borrelia lusitaniae. Health status evaluation conducted on the Sciurus carolinensis population indicated that it is necessary to raise awareness of its impacts on biodiversity and human health. Moreover, the health status and behaviours of the IAS must be considered when control or eradication campaigns are planned.
Collapse
Affiliation(s)
- Deborah Cruciani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
- Correspondence:
| | - Silvia Crotti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | | | - Valentina La Morgia
- Istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA), Via Vitaliano Brancati 48, 00144 Roma, Italy
| | - Andrea Felici
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Paola Papa
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Gian Mario Cosseddu
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri” (IZSLT), Via Appia Nuova 1411, 00178 Roma, Italy
- Istituto Zooprofilattico Sperimentale Abruzzo e Molise “G. Caporale” (IZSAM), Campo Boario, 64100 Teramo, Italy
| | - Livia Moscati
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| | - Paola Gobbi
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati” (IZSUM), Via G. Salvemini 1, 06126 Perugia, Italy
| |
Collapse
|
5
|
Goethert HK. What Babesia microti Is Now. Pathogens 2021; 10:pathogens10091168. [PMID: 34578201 PMCID: PMC8467215 DOI: 10.3390/pathogens10091168] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Parasites from diverse hosts morphologically identified as Babesia microti have previously been shown to belong to a paraphyletic species complex. With a growing number of reports of B. microti-like parasites from across the world, this paper seeks to report on the current knowledge of the diversity of this species complex. Phylogenetic analysis of 18S rDNA sequences obtained from GenBank shows that the diversity of the B. microti species complex has markedly increased and now encompasses at least five distinct clades. This cryptic diversity calls into question much of our current knowledge of the life cycle of these parasites, as many biological studies were conducted before DNA sequencing technology was available. In many cases, it is uncertain which B. microti-like parasite was studied because parasites from different clades may occur sympatrically and even share the same host. Progress can only be made if future studies are conducted with careful attention to parasite identification and PCR primer specificity.
Collapse
Affiliation(s)
- Heidi K Goethert
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536, USA
| |
Collapse
|
6
|
Zamoto-Niikura A, Hagiwara K, Imaoka K, Morikawa S, Ishihara C, Hanaki KI. Epidemiological Survey of Babesia divergens Asia Lineage in Wild Sika Deer (Cervus nippon) by Using Direct PCR in Japan. Jpn J Infect Dis 2019; 73:68-71. [PMID: 31564691 DOI: 10.7883/yoken.jjid.2019.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Babesia divergens is the major causal agent of zoonotic human babesiosis across Europe. Previously, we reported the detection of a B. divergens Asia lineage in wild sika deer (Cervus nippon) in Japan which was genetically closely related to the European B. divergens. To further elucidate its etiology, we conducted a large epidemiological survey by combining lineage-specific PCR system and blood direct PCR. The infection rate of the Asia lineage was 6.6% (116/1,747) throughout Japan, where Hokkaido (45%), Nagano (17%), Iwate (12%), Gunma (11%), and Yamanashi (11%) were highly enzootic (> 10%) among the 30 prefectures examined. European B. divergens was not detected. A geographical information system (GIS) map revealed dense populations of PCR-positive deer in the mountains including the Japanese Alps in eastern Honshu, and Hokkaido. These areas markedly overlapped with the major habitats of Ixodes persulcatus, a principal tick vector responsible for the transmission of the Asia lineage. Other areas in southern Japan including Miyazaki, Kagoshima, and Shimane Prefectures, where positive sika deer were sporadically detected, may be habitats for other tick species involved in the enzootic cycle as I. persulcatus were scarce. The rise in human babesiosis cases is occasionally attributed to healthy blood donors who were unaware of tick bites and Babesia infection. Therefore, there is an urgent need to investigate whether infections in humans have occurred in Japan.
Collapse
Affiliation(s)
- Aya Zamoto-Niikura
- Division of Experimental Animal Research, National Institute of Infectious Diseases
| | | | - Koichi Imaoka
- Department of Veterinary Science, National Institute of Infectious Diseases
| | - Shigeru Morikawa
- Department of Veterinary Science, National Institute of Infectious Diseases
| | | | - Ken-Ichi Hanaki
- Division of Experimental Animal Research, National Institute of Infectious Diseases
| |
Collapse
|
7
|
James Harris D, Halajian A, Santos JL, Swanepoel LH, Taylor PJ, Xavier R. Diversity of haemoprotozoan parasites infecting the wildlife of South Africa. Folia Parasitol (Praha) 2018; 65. [PMID: 30348909 DOI: 10.14411/fp.2018.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/31/2018] [Indexed: 11/19/2022]
Abstract
Tissue samples from wildlife from South Africa were opportunistically collected and screened for haemoprotozoan parasites using nonspecific PCR primers. Samples of 127 individuals were tested, comprising over 50 different species. Haemogregarines were the most commonly identified parasites, but sarcocystids and piroplasmids were also detected. Phylogenetic analyses estimated from the 18S rDNA marker highlighted the occurrence of several novel parasite forms and the detection of parasites in novel hosts. Phylogenetic relationships, which have been recently reviewed, appear to be much more complex than previously considered. Our study highlights the high diversity of parasites circulating in wildlife in this biodiverse region, and the need for further studies to resolve taxonomic issues.
Collapse
Affiliation(s)
- D James Harris
- CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Vairao, Portugal.,Departamento de Biologia, Faculdade de Ciencias da Universidade do Porto, Porto, Portugal
| | - Ali Halajian
- Department of Biodiversity, University of Limpopo, South Africa
| | - Joana L Santos
- CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Vairao, Portugal
| | - Lourens H Swanepoel
- Department of Zoology, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa
| | - Peter John Taylor
- NRF/DET SARCHI Chair on Biodiversity Value and Change, School of Mathematical and Natural Sciences, University of Venda, Thohoyandou, South Africa.,Core Team Member, Centre for Invasion Biology, Stellenbosch University, Stellenbosch, Republic of South Africa.,Honorary Research Associate, University of KwaZulu Natal, Durban, Republic of South Africa
| | - Raquel Xavier
- CIBIO/InBIO, Centro de Investigacao em Biodiversidade e Recursos Geneticos, Campus Agrario de Vairao, Vairao, Portugal
| |
Collapse
|
8
|
Sayama Y, Zamoto-Niikura A, Matsumoto C, Saijo M, Ishihara C, Matsubayashi K, Nagai T, Satake M. Analysis of antigen-antibody cross-reactivity among lineages and sublineages of Babesia microti parasites using human babesiosis specimens. Transfusion 2018. [PMID: 29524239 DOI: 10.1111/trf.14558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Human babesiosis is caused mainly by Babesia microti and has recently become a public health concern due to an increase in transfusion-transmitted infection. Thus, the development of an antibody detection method with high specificity and sensitivity is a priority. Seroreactivity against B. microti has been reported to be highly specific not only to B. microti lineages but also to sublineages. This study aimed to elucidate the human antibody reactivity against various lineages, including US, Kobe, and Hobetsu, and sublineages (North America and East Asia) in the US lineage. STUDY DESIGN AND METHODS Twenty samples obtained from individuals infected with B. microti in the United States were tested for the presence of anti-B. microti antibodies using indirect immunofluorescence assay (IFA) and Western blotting (WB) to indicate antigens of each (sub-)lineage. RESULTS By IFA, 20 samples showed reactivity to the North America sublineage (titer range, 64-4096), 16 to the East Asia sublineage (64-512), 10 to the Kobe (64-128), and five to the Hobetsu (64). Antibody titers to the East Asia sublineage, Kobe, and Hobetsu were significantly lower than those to the North America sublineage (p < 0.01). By WB, in parallel with the IFA results, 18 samples showed strong reactions to the North America sublineage, weak reactions to the East Asia sublineage, and near-zero reactions to the Kobe and Hobetsu. CONCLUSION Human antibodies induced by B. microti infection are highly specific against B. microti lineages and sublineages with low cross-reactivity. Developing a precise antibody detection method may require specific antigens based on B. microti lineages and sublineages.
Collapse
Affiliation(s)
- Yusuke Sayama
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, National Institute of Infectious Diseases, Tokyo, Japan.,Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Aya Zamoto-Niikura
- Division of Experimental Animal Diseases, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chieko Matsumoto
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chiaki Ishihara
- School of Veterinary Medicine, Rakuno-Gakuen University, Ebetsu, Japan
| | - Keiji Matsubayashi
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadashi Nagai
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masahiro Satake
- Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
9
|
Hong SH, Kim HJ, Jeong YI, Cho SH, Lee WJ, Kim JT, Lee SE. Serological and Molecular Detection of Toxoplasma gondii and Babesia microti in the Blood of Rescued Wild Animals in Gangwon-do (Province), Korea. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:207-212. [PMID: 28506045 PMCID: PMC5450965 DOI: 10.3347/kjp.2017.55.2.207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/25/2017] [Accepted: 03/18/2017] [Indexed: 11/25/2022]
Abstract
Infections of Toxoplasma gondii and Babesia microti are reported in many wild animals worldwide, but information on their incidence and molecular detection in Korean wild fields is limited. In this study, the prevalence of T. gondii and B. microti infection in blood samples of 5 animal species (37 Chinese water deer, 23 raccoon dogs, 6 roe deer, 1 wild boar, and 3 Eurasian badgers) was examined during 2008–2009 in Gangwon-do (Province), the Republic of Korea (=Korea) by using serological and molecular tests. The overall seropositivity of T. gondii was 8.6% (6/70); 10.8% in Chinese water deer, 4.3% in raccoon dogs, and 16.7% in roe deer. PCR revealed only 1 case of T. gondii infection in Chinese water deer, and phylogenic analysis showed that the positive isolate was practically identical to the highly pathogenetic strain type I. In B. microti PCR, the positive rate was 5.7% (4/70), including 2 Chinese water deer and 2 Eurasian badgers. Phylogenetic analysis results of 18S rRNA and the β-tubulin gene showed that all positive isolates were US-type B. microti. To our knowledge, this is the first report of B. microti detected in Chinese water deer and Eurasian badger from Korea. These results indicate a potentially high prevalence of T. gondii and B. microti in wild animals of Gangwon-do, Korea. Furthermore, Chinese water deer might act as a reservoir for parasite infections of domestic animals.
Collapse
Affiliation(s)
- Sung-Hee Hong
- Division of Malaria and Parasitc Diseases, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju 28159, Korea
| | - Hee-Jong Kim
- Colleage of Veterinary Medicine, Gangwon National University, Chuncheon 24341, Korea
| | - Young-Il Jeong
- Division of Malaria and Parasitc Diseases, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju 28159, Korea
| | - Shin-Hyeong Cho
- Division of Malaria and Parasitc Diseases, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju 28159, Korea
| | - Won-Ja Lee
- Division of Malaria and Parasitc Diseases, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju 28159, Korea
| | - Jong-Tak Kim
- Colleage of Veterinary Medicine, Gangwon National University, Chuncheon 24341, Korea
| | - Sang-Eun Lee
- Division of Malaria and Parasitc Diseases, Korea National Institute of Health, Korea Center for Disease Control and Prevention, Cheongju 28159, Korea
| |
Collapse
|
10
|
Ixodes persulcatus Ticks as Vectors for the Babesia microti U.S. Lineage in Japan. Appl Environ Microbiol 2016; 82:6624-6632. [PMID: 27590815 DOI: 10.1128/aem.02373-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 12/19/2022] Open
Abstract
The U.S. lineage, one of the major clades in the Babesia microti group, is known as a causal agent of human babesiosis mostly in the northeastern and upper midwestern United States. This lineage, however, also is distributed throughout the temperate zone of Eurasia with several reported human cases, although convincing evidence of the identity of the specific vector(s) in this area is lacking. Here, the goal was to demonstrate the presence of infectious parasites directly in salivary glands of Ixodes persulcatus, from which U.S. lineage genetic sequences have been detected in Asia, and to molecularly characterize the isolates. Five PCR-positive specimens were individually inoculated into hamsters, resulting in infections in four; consequently, four strains were newly established. Molecular characterization, including 18S rRNA, β-tubulin, and CCT7 gene sequences, as well as Western blot analysis and indirect fluorescent antibody assay, revealed that all four strains were identical to each other and to the U.S. lineage strains isolated from rodents captured in Japan. The 18S rRNA gene sequence from the isolates was identical to those from I. persulcatus in Russia and China, but the genetic and antigenic profiles of the Japanese parasites differ from those in the United States and Europe. Together with previous epidemiological and transmission studies, we conclude that I. persulcatus is likely the principal vector for the B. microti U.S. lineage in Japan and presumably in northeastern Eurasia. IMPORTANCE The major cause of human babesiosis, the tick-borne blood parasite Babesia microti, U.S. lineage, is widely distributed in the temperate Northern Hemisphere. However, the specific tick vector(s) remains unidentified in Eurasia, where there are people with antibodies to the B. microti U.S. lineage and cases of human babesiosis. In this study, the first isolation of B. microti U.S. lineage from Ixodes persulcatus ticks, a principal vector for many tick-borne diseases, is described in Japan. Limited antigenic cross-reaction was found between the Japan and United States isolates. Thus, current serological tests based on U.S. isolates may underestimate B. microti occurrence outside the United States. This study and previous studies indicate that I. persulcatus is part of the B. microti U.S. lineage life cycle in Japan and, presumably, northeastern Eurasia. This report will be important for public health, especially since infection may occur through transfusion, and also to researchers in the field of parasitology.
Collapse
|
11
|
Hong SH, Lee SE, Jeong YI, Kim HC, Chong ST, Klein TA, Song JW, Gu SH, Cho SH, Lee WJ. Prevalence and molecular characterizations of Toxoplasma gondii and Babesia microti from small mammals captured in Gyeonggi and Gangwon Provinces, Republic of Korea. Vet Parasitol 2014; 205:512-7. [PMID: 25178555 DOI: 10.1016/j.vetpar.2014.07.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/28/2014] [Accepted: 07/30/2014] [Indexed: 10/24/2022]
Abstract
A survey was conducted to determine the distribution and prevalence of Toxoplasma gondii and Babesia microti infections in small mammals captured in Gyeonggi and Gangwon Provinces, Republic of Korea (ROK). The serological prevalence of T. gondii (ELISA) and B. microti (IFAT) was 2.3% (15/667) and 2.1% (14/667), respectively. DNA extracts from small mammal heart tissues were screened by PCR for T. gondii and B. microti targeting regions of the GRA5 gene and the 18S rRNA and β-tubulin genes, respectively. Only 0.17% (1/578) of Apodemus agrarius was positive of T. gondii by PCR, while 0.52% (3/578) was positive of B. microti. All other small mammal species [Micromys minutus (16), Mus musculus (3), Myodes regulus (22), Microtus fortis (6), and Crocidura lasiura (42)] were negative for both T. gondii and B. microti. Based on sequence polymorphism and phylogenetic analysis, T. gondii closely aligned with Type I, a highly virulent strain, while B. microti positive samples closely aligned with US-type B. microti and others observed in the ROK, Russia, and Japan. These results indicate that A. agrarius is a reservoir for both T. gondii and B. microti in the ROK.
Collapse
Affiliation(s)
- Sung-Hee Hong
- Division of Malaria & Parasite Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong2-ro, Osong-up, Cheongwon-gun, Chungbuk Province 363-951, Republic of Korea
| | - Sang-Eun Lee
- Division of Malaria & Parasite Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong2-ro, Osong-up, Cheongwon-gun, Chungbuk Province 363-951, Republic of Korea
| | - Young-Il Jeong
- Division of Malaria & Parasite Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong2-ro, Osong-up, Cheongwon-gun, Chungbuk Province 363-951, Republic of Korea
| | - Heung-Chul Kim
- 5th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, Unit 15247, APO AP 96205-5247, USA
| | - Sung-Tae Chong
- 5th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, Unit 15247, APO AP 96205-5247, USA
| | - Terry A Klein
- Public Health Command Region-Pacific, Camp Zama, Japan, 65th Medical Brigade, Unit 15281, APO AP 96205-5281, USA
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul 136-705, Republic of Korea
| | - Se Hun Gu
- Department of Microbiology, College of Medicine, Korea University, Seoul 136-705, Republic of Korea; Pacific Center for Emerging Infectious Diseases Research, John A. Burns School of Medicine, University of Hawaii at Manoa, 651 Ilalo Street, Honolulu, HI 96813, USA
| | - Shin-Hyeong Cho
- Division of Malaria & Parasite Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong2-ro, Osong-up, Cheongwon-gun, Chungbuk Province 363-951, Republic of Korea
| | - Won-Ja Lee
- Division of Malaria & Parasite Diseases, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, 187 Osongsaengmyeong2-ro, Osong-up, Cheongwon-gun, Chungbuk Province 363-951, Republic of Korea.
| |
Collapse
|
12
|
Yabsley MJ, Shock BC. Natural history of Zoonotic Babesia: Role of wildlife reservoirs. Int J Parasitol Parasites Wildl 2013; 2:18-31. [PMID: 24533312 PMCID: PMC3862492 DOI: 10.1016/j.ijppaw.2012.11.003] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/25/2012] [Accepted: 11/06/2012] [Indexed: 11/02/2022]
Abstract
Babesiosis is an emerging zoonotic disease on all inhabited continents and various wildlife species are the principal reservoir hosts for zoonotic Babesia species. The primary vectors of Babesia are Ixodid ticks, with the majority of zoonotic species being transmitted by species in the genus Ixodes. Species of Babesia vary in their infectivity, virulence and pathogenicity for people. Various factors (e.g., increased interactions between people and the environment, increased immunosuppression, changes in landscape and climate, and shifts in host and vector species abundance and community structures) have led to an increase in tick-borne diseases in people, including babesiosis. Furthermore, because babesiosis is now a reportable disease in several states in the United States, and it is the most common blood transfusion-associated parasite, recognized infections are expected to increase. Because of the zoonotic nature of these parasites, it is essential that we understand the natural history (especially reservoirs and vectors) so that appropriate control and prevention measures can be implemented. Considerable work has been conducted on the ecology of Babesia microti and Babesia divergens, the two most common causes of babesiosis in the United States and Europe, respectively. However, unfortunately, for many of the zoonotic Babesia species, the reservoir(s) and/or tick vector(s) are unknown. We review the current knowledge regarding the ecology of Babesia among their reservoir and tick hosts with an emphasis of the role on wildlife as reservoirs. We hope to encourage the molecular characterization of Babesia from potential reservoirs and vectors as well from people. These data are necessary so that informed decisions can be made regarding potential vectors and the potential role of wildlife in the ecology of a novel Babesia when it is detected in a human patient.
Collapse
Affiliation(s)
- Michael J. Yabsley
- Corresponding author. Address: The Southeastern Cooperative Wildlife Disease Study, Department of Population Health, 589 DW Brooks Drive, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA. Tel.: +1 706 542 1741; fax: +1 706 542 5865.
| | - Barbara C. Shock
- Daniel B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
- The Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
13
|
Hersh MH, Tibbetts M, Strauss M, Ostfeld RS, Keesing F. Reservoir competence of wildlife host species for Babesia microti. Emerg Infect Dis 2013; 18:1951-7. [PMID: 23171673 PMCID: PMC3557901 DOI: 10.3201/eid1812.111392] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Competence data will aid understanding of the spread of human babesiosis. Human babesiosis is an increasing health concern in the northeastern United States, where the causal agent, Babesia microti, is spread through the bite of infected Ixodes scapularis ticks. We sampled 10 mammal and 4 bird species within a vertebrate host community in southeastern New York to quantify reservoir competence (mean percentage of ticks infected by an individual host) using real-time PCR. We found reservoir competence levels >17% in white-footed mice (Peromyscus leucopus), raccoons (Procyon lotor), short-tailed shrews (Blarina brevicauda), and eastern chipmunks (Tamias striatus), and <6% but >0% in all other species, including all 4 bird species. Data on the relative contributions of multiple host species to tick infection with B. microti and level of genetic differentiation between B. microti strains transmitted by different hosts will help advance understanding of the spread of human babesiosis.
Collapse
|
14
|
Schnittger L, Rodriguez AE, Florin-Christensen M, Morrison DA. Babesia: a world emerging. INFECTION GENETICS AND EVOLUTION 2012; 12:1788-809. [PMID: 22871652 DOI: 10.1016/j.meegid.2012.07.004] [Citation(s) in RCA: 382] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 07/06/2012] [Accepted: 07/08/2012] [Indexed: 11/15/2022]
Abstract
Babesia are tick-transmitted hemoprotozooans that infect mammals and birds, and which are acknowledged for their major impact on farm and pet animal health and associated economic costs worldwide. Additionally, Babesia infections of wildlife can be fatal if associated with stressful management practices; and human babesiosis, also transmitted by blood transfusion, is an increasing public-health concern. Due to the huge diversity of species reported to serve as Babesia hosts, all vertebrates might be potential carriers, as long as they are adequate hosts for Babesia-vector ticks. We here provide a comprehensive overview of the most relevant Babesia species, and a discussion of the classical taxonomic criteria. Babesia, Cytauxzoon and Theileria parasites are closely related and collectively referred to as piroplasmids. A possible scenario for the history of piroplasmids is presented in the context of recent findings, and its implications for future research avenues are outlined. Phylogenetic trees of all available 18S rRNA and hsp70 genes were generated, based on which we present a thoroughly revised molecular classification, comprising five monophyletic Babesia lineages, one Cytauxzoon clade, and one Theileria clade. Updated 18S rRNA and beta-tubulin gene trees of the B. microti isolates agree with those previously reported. To reconcile estimates of the origin of piroplasmids and ticks (~300 Ma, respectively), and mammalian radiation (60 Ma), we hypothesize that the dixenous piroplasmid life cycle evolved with the origin of ticks. Thus, the observed time gap between tick origin and mammalian radiation indicates the existence of hitherto unknown piroplasmid lineages and/or species in extant vertebrate taxa, including reptiles and possibly amphibians. The development and current status of the molecular taxonomy of Babesia, with emphasis on human-infecting species, is discussed. Finally, recent results from population genetic studies of Babesia parasites, and their implications for the development of pathogenicity, drug resistance and vaccines, are summarized.
Collapse
Affiliation(s)
- Leonhard Schnittger
- Institute of Pathobiology, Center of Research in Veterinary and Agronomic Sciences, INTA-Castelar, Argentina.
| | | | | | | |
Collapse
|
15
|
Detection of two zoonotic Babesia microti lineages, the Hobetsu and U.S. lineages, in two sympatric tick species, ixodes ovatus and Ixodes persulcatus, respectively, in Japan. Appl Environ Microbiol 2012; 78:3424-30. [PMID: 22389378 DOI: 10.1128/aem.00142-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The species Babesia microti, commonly found in rodents, demonstrates a high degree of genetic diversity. Three lineages, U.S., Kobe, and Hobetsu, are known to have zoonotic potential, but their tick vector(s) in Japan remains to be elucidated. We conducted a field investigation at Nemuro on Hokkaido Island and at Sumoto on Awaji Island, where up to two of the three lineages occur with similar frequencies in reservoirs. By flagging vegetation at these spots and surrounding areas, 4,010 ticks, comprising six species, were collected. A nested PCR that detects the 18S rRNA gene of Babesia species revealed that Ixodes ovatus and I. persulcatus alone were positive. Lineage-specific PCR for rRNA-positive samples demonstrated that I. ovatus and I. persulcatus carried, respectively, the Hobetsu and U.S. parasites. No Kobe-specific DNA was detected. Infected I. ovatus ticks were found at multiple sites, including Nemuro and Sumoto, with minimum infection rates (MIR) of ∼12.3%. However, all I. persulcatus ticks collected within the same regions, a total of 535, were negative for the Hobetsu lineage, indicating that I. ovatus, but not I. persulcatus, was the vector for the lineage. At Nemuro, U.S. lineage was detected in 2 of 139 adult I. persulcatus ticks (MIR, 1.4%), for the first time, while 48 of I. ovatus ticks were negative for that lineage. Laboratory experiments confirmed the transmission of Hobetsu and U.S. parasites to hamsters via I. ovatus and I. persulcatus, respectively. Differences in vector capacity shown by MIRs at Nemuro, where the two species were equally likely to acquire either lineage of parasite, may explain the difference in distribution of Hobetsu throughout Japan and U.S. taxa in Nemuro. These findings are of importance in the assessment of the regional risk for babesiosis in humans.
Collapse
|
16
|
Hirata H, Kawai S, Maeda M, Jinnai M, Fujisawa K, Katakai Y, Hikosaka K, Tanabe K, Yasutomi Y, Ishihara C. Identification and phylogenetic analysis of Japanese Macaque Babesia-1 (JM-1) detected from a Japanese Macaque (Macaca fuscata fuscata). Am J Trop Med Hyg 2011; 85:635-8. [PMID: 21976563 DOI: 10.4269/ajtmh.2011.11-0035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We demonstrate here the identification and phylogenetic characterization of Babesia microti (B. microti)-like parasite detected from a splenectomized Japanese macaque (Macaca fuscata fuscata) at a facility for laboratory animal science. On Day 133 after splenectomy, intra-erythrocytic parasites were found on light microscopic examination, and the level of parasitemia reached 0.3% on blood smear. Molecular characterization of the parasite using nested-polymerization chain reactions targeting the 18S rRNA, β-tubulin, and subunit 7 (eta) of the chaperonin-containing t-complex polypeptide 1 (CCT7) genes were identified as a B. microti-like parasite, designated the Japanese Macaque Babesia-1 (JM-1).
Collapse
Affiliation(s)
- Haruyuki Hirata
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maamun JM, Suleman MA, Akinyi M, Ozwara H, Kariuki T, Carlsson HE. Prevalence of Babesia microti in free-ranging baboons and African green monkeys. J Parasitol 2010; 97:63-7. [PMID: 21348608 DOI: 10.1645/ge-2391.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Babesia microti-like parasites have been reported to infect captive non-human primates (NHPs). However, studies on the prevalence of Babesia spp. in free-ranging NHPs are lacking. This investigation aimed at determining the prevalence of B. microti in wild-caught Kenyan NHPs. In total, 125 animals were studied, including 65 olive baboons (Papio cynocephalus anubis) and 60 African green monkeys ([AGMs] Chlorocebus aethiops). Nested polymerase chain reaction targeting Babesia β-tubulin genes was used to diagnose infection prevalence. Results indicated a prevalence of 22% (27/125) B. microti infection in free-ranging NHPs in Kenya. There was no statistically significant difference in B. microti infection prevalence between baboons and AGMs or male and female animals. This is the first report of the presence and prevalence of B. microti in free-ranging Kenyan NHPs.
Collapse
Affiliation(s)
- Jeneby M Maamun
- Department of Tropical and Infectious Diseases, Institute of Primate Research, National Museums of Kenya, PO Box 24481-00502 Karen, Nairobi, Kenya.
| | | | | | | | | | | |
Collapse
|
18
|
Nakajima R, Tsuji M, Oda K, Zamoto-Niikura A, Wei Q, Kawabuchi-Kurata T, Nishida A, Ishihara C. Babesia microti-group parasites compared phylogenetically by complete sequencing of the CCTeta gene in 36 isolates. J Vet Med Sci 2009; 71:55-68. [PMID: 19194077 DOI: 10.1292/jvms.71.55] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Babesia microti, the erythroparasitic cause of human babesiosis, has long been taken to be a single species because classification by parasite morphology and host spectrum blurred distinctions between the parasites. Phylogenetic analyses of the 18S ribosomal RNA gene (18S rDNA) and, more recently, the beta-tubulin gene have suggested inter-group heterogeneity. Intra-group relationships, however, remain unknown. This study was conducted to clarify the intra- and inter-group phylogenetic features of the B. microti-group parasites with the eta subunit of the chaperonin-containing t-complex polypeptide l (CCTeta) gene as a candidate genetic marker for defining the B. microti group. We prepared complete sequences of the CCTeta gene from 36 piroplasms and compared the phylogenetic trees. The B. microti-group parasites clustered in a monophyletic assemblage separate from the Babesia sensu stricto and Theileria genera and subdivided predominantly into 4 clades (U.S., Kobe, Hobetsu, Munich) with highly significant evolutionary distances between the clades. B. rodhaini branched at the base of the B. microti-group parasites. In addition, a unique intron presence/absence matrix not observable in 18S rDNA or beta-tubulin set the B. microti group entirely apart from either Babesia sensu stricto or Theileria. These results have strong implications for public health, suggesting that the B. microti-group parasites are a full-fledged genus comprising, for now, four core species, i.e., U.S., Kobe, Hobetsu, and Munich species nova. Furthermore, the CCTeta gene is an instructive and definitive genetic marker for analyzing B. microti and related parasites.
Collapse
Affiliation(s)
- Rui Nakajima
- School of Veterinary Medicine, Rakuno Gakuen University, 582-1 Bunkyodai Midorimachi, Ebetsu, Japan
| | | | | | | | | | | | | | | |
Collapse
|