1
|
Tsubaki M, Takeda T, Matsuda T, Kishimoto K, Takefuji H, Taniwaki Y, Ueda M, Hoshida T, Tanabe K, Nishida S. Statins enhances antitumor effect of oxaliplatin in KRAS-mutated colorectal cancer cells and inhibits oxaliplatin-induced neuropathy. Cancer Cell Int 2023; 23:73. [PMID: 37069612 PMCID: PMC10108455 DOI: 10.1186/s12935-023-02884-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/01/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND KRAS mutations are fraught with the progression of colorectal cancer and resistance to chemotherapy. There are pathways such as extracellular regulated protein kinase 1/2 (ERK1/2) and Akt downstream and farnesylation and geranylgeranylation upstream that are activated upon mutated KRAS. Previous studies have shown that statins, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, are effective to treat KRAS mutated colorectal cancer cells. Increased doses of oxaliplatin (L-OHP), a well-known alkylating chemotherapeutic drug, causes side effects such as peripheral neuropathy due to ERK1/2 activation in spinal cords. Hence, we examined the combinatorial therapeutic efficacy of statins and L-OHP to reduce colorectal cancer cell growth and abrogate neuropathy in mice. METHODS Cell survival and confirmed apoptosis was assessed using WST-8 assay and Annexin V detection kit. Detection of phosphorylated and total proteins was analyzed the western blotting. Combined effect of simvastatin and L-OHP was examined the allograft mouse model and L-OHP-induced neuropathy was assessed using cold plate and von Frey filament test. RESULTS In this study, we examined the effect of combining statins with L-OHP on induction of cell death in colorectal cancer cell lines and improvement of L-OHP-induced neuropathy in vivo. We demonstrated that combined administration with statins and L-OHP significantly induced apoptosis and elevated the sensitivity of KRAS-mutated colorectal cancer cells to L-OHP. In addition, simvastatin suppressed KRAS prenylation, thereby enhancing antitumor effect of L-OHP through downregulation of survivin, XIAP, Bcl-xL, and Bcl-2, and upregulation of p53 and PUMA via inhibition of nuclear factor of κB (NF-κB) and Akt activation, and induction of c-Jun N-terminal kinase (JNK) activation in KRAS-mutated colorectal cancer cells. Moreover, simvastatin enhanced the antitumor effects of L-OHP and suppressed L-OHP-induced neuropathy via ERK1/2 activation in vivo. CONCLUSION Therefore, statins may be therapeutically useful as adjuvants to L-OHP in KRAS-mutated colorectal cancer and may also be useful in the treatment of L-OHP-induced neuropathy.
Collapse
Affiliation(s)
- Masanobu Tsubaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Tomoya Takeda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Takuya Matsuda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Kana Kishimoto
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Honoka Takefuji
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Yuzuki Taniwaki
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Misa Ueda
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
| | - Tadafumi Hoshida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Kazufumi Tanabe
- Department of Pharmacy, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kindai University Faculty of Pharmacy, Kowakae, Higashi-Osaka, 577-8502, Japan.
| |
Collapse
|
2
|
Abd-Elmawla MA, Abdelalim E, Ahmed KA, Rizk SM. The neuroprotective effect of pterostilbene on oxaliplatin-induced peripheral neuropathy via its anti-inflammatory, anti-oxidative and anti-apoptotic effects: Comparative study with celecoxib. Life Sci 2023; 315:121364. [PMID: 36610639 DOI: 10.1016/j.lfs.2022.121364] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023]
Abstract
BACKGROUND Oxaliplatin is one of the first-line drugs in solid tumors treatment. However, neuropathy is a devastating side effect leading to poor compliance and treatment cessation. AIM The current study explored pterostilbene plausible neuroprotective effects aiming to ascertain the potential mechanisms involved in relieving oxaliplatin-induced peripheral neuropathy (OIPN) and investigating whether pterostilbene and celecoxib combination could show better relief. MAIN METHODS Rats were divided into six groups; control, pterostilbene (40 mg/kg/day, p.o. for 5 weeks), oxaliplatin (4 mg/kg, i.p. twice per week for 4.5 weeks), celecoxib (30 mg/kg/day, p.o. for 5 weeks) and combination of pterostilbene and celecoxib. Behavioral tests and histopathological analysis of sciatic nerves were done. MAPKs, cytokines, COX-2, and PGE2 gene and protein expressions were estimated using qRT-PCR, western, and ELISA techniques. Malondialdehyde (MDA) and total antioxidant capacity (TAC) were assessed by colorimetric assay while apoptotic markers by immunohistochemical analysis and qRT-PCR. KEY FINDINGS The study revealed that pterostilbene and celecoxib averted oxaliplatin-induced behavioral and motor impairments along with restoration of histopathological changes. Moreover, pterostilbene and celecoxib have significantly attenuated sciatic nerve: p38 MAPK, JNK, ERK1/2, NF-κB, COX-2, PGE2, TNF-α, and interleukins levels. Pterostilbene and celecoxib have reduced caspase-3, Bax, and MDA while increasing Bcl-2 level and TAC. SIGNIFICANCE Altogether, Pterostilbene mitigates OIPN by interrupting the vicious cycle of inflammation, oxidation, and apoptosis. Furthermore, pterostilbene and celecoxib show comparable attenuation on MAPKs cascades, inflammatory cytokines, oxidative and apoptotic markers. Likewise, co-administration of pterostilbene and celecoxib shows further relief of neuropathic pain.
Collapse
Affiliation(s)
- Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Eman Abdelalim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Sherine M Rizk
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Zhang P, Song E, Jiang M, Song Y. Celecoxib and Afatinib synergistic enhance radiotherapy sensitivity on human non-small cell lung cancer A549 cells. Int J Radiat Biol 2020; 97:170-178. [PMID: 33164600 DOI: 10.1080/09553002.2021.1846817] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Radioresistance is highly correlated with radiotherapy failure in clinical cancer treatment. In the current study, we sought to examine the efficacy of Celecoxib and Afatinib co-treatment as radiosensitizers in the management of non-small cell lung cancer (NSCLC) A549 cells. MATERIALS AND METHODS Generally, A549 cells were cultured with the treatment of Celecoxib and/or Afatinib for 24 h. Then, the cells were exposed to irradiation at 2 Gy/min for 1 min. After the end of treatment, cell viability, clonogenic survival, apoptosis and Prostaglandin E2 (PGE2) Elisa assays were performed. Transcriptional levels of Cyclooxygenase-2 (COX-2) affected by Celecoxib and/or Afatinib were measured by RT-qPCR. Posttranscriptional level of epidermal growth factor receptor (EGFR)-related gene was measured by Western blotting analysis. RESULTS Here, we, for the first time, reported that the co-treatment of Celecoxib and Afatinib regulates the resistance of NSCLC A549 cells to radiation. The co-treatment of Celecoxib and Afatinib sensitized radiotherapy through the radiation-induced loss of cell viability and colony formation, as well as apoptosis. Mechanistically, Celecoxib and Afatinib-treated cells showed the inhibition of COX-2 and EGFR expression, which may be responsible for the A549 cells' increased resistance to radiation. CONCLUSION Our results suggested that Celecoxib and Afatinib regulate cell sensitivity to apoptosis, and thus modulate the resistance of NSCLC to radiation.
Collapse
Affiliation(s)
- Pan Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| | - Mingdong Jiang
- Department of Radiation Oncology, The Ninth People's Hospital of Chongqing, Chongqing, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing, People's Republic of China
| |
Collapse
|
4
|
Based on Systematic Pharmacology: Molecular Mechanism of Siwei Jianbu Decoction in Preventing Oxaliplatin-Induced Peripheral Neuropathy. Neural Plast 2020; 2020:8880543. [PMID: 33082779 PMCID: PMC7559195 DOI: 10.1155/2020/8880543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 11/17/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a dose-limiting side effect caused by chemotherapy drugs, and its existence seriously affects the quality of life of patients. We first established an oxaliplatin-induced peripheral neuropathy (OIPN) model and then measured and evaluated mechanical hyperalgesia, thermal nociception, cold allodynia, and intraepidermal nerve fiber (IENF) density to determine Siwei Jianbu Decoction's role in preventing OIPN. Then, we conducted a systematic pharmacological study that revealed important roles for the MAPK signaling pathway and proinflammatory immune pathway and confirmed these roles by western blot, immunofluorescence, and qPCR. The data show that Siwei Jianbu Decoction can effectively prevent oxaliplatin-induced neuroinflammation by inhibiting an increase in NF-κB expression via downregulation of p-ERK1/2 and p-p38. The present study showed that SWJB may be beneficial in preventing oxaliplatin-induced peripheral neuropathy.
Collapse
|
5
|
Synergistic antiallodynic and antihyperalgesic interaction between L-DOPA and celecoxib in parkinsonian rats is mediated by NO-cGMP-ATP-sensitive K + channel. Eur J Pharmacol 2020; 889:173537. [PMID: 32971091 DOI: 10.1016/j.ejphar.2020.173537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 08/28/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
Pain is a usual and troublesome non-motor symptom of Parkinson's disease, with a prevalence of 29-82%. Therefore, it's vital to find pharmacological treatments for managing PD-associated pain symptoms, to improve patients' quality of life. For this reason, we tested the possible synergy between L-DOPA and celecoxib in decreasing allodynia and hyperalgesia induced by unilateral lesioning with 6-OHDA into the SNpc in rats. We also tested whether the antiallodynic and antihyperalgesic effect induced by combination of L-DOPA and celecoxib is mediated by the NO-cGMP-ATP-sensitive K+ channel pathway. Tactile allodynia and mechanical hyperalgesia were evaluated using von Frey filament. Isobolographic analyses were employed to define the nature of the drug interaction using a fixed dose ratio (0.5: 0.5). We found that acute and sub-acute (10-day) treatment with a single dose of L-DOPA (3-25 mg/kg, i. p.) or celecoxib (2.5-20 mg/kg, i. p.) induced a dose-dependent antiallodynic and antihyperalgesic effect in parkinsonian rats. Isobolographic analysis revealed that the ED50 values obtained by L-DOPA + celecoxib combination was significantly less than calculated additive values, indicating that co-administration of L-DOPA with celecoxib produces synergistic interactions in its antiallodynic and antihyperalgesic effect in animals with nigrostriatal lesions. Moreover, the antiallodynic and antihyperalgesic effects induced by L-DOPA + celecoxib combination were blocked by intrathecal pre-treatment with L-NAME, ODQ, and glibenclamide. Taken together, the data suggest that L-DOPA + celecoxib combination produces an antiallodynic and antihyperalgesic synergistic interaction at the systemic level, and these effects are mediated, at the central level, through activation of the NO-cGMP-ATP-sensitive K+ channel pathway.
Collapse
|
6
|
Hooijmans CR, Draper D, Ergün M, Scheffer GJ. The effect of analgesics on stimulus evoked pain-like behaviour in animal models for chemotherapy induced peripheral neuropathy- a meta-analysis. Sci Rep 2019; 9:17549. [PMID: 31772391 PMCID: PMC6879539 DOI: 10.1038/s41598-019-54152-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/09/2019] [Indexed: 12/28/2022] Open
Abstract
Chemotherapy induced painful peripheral neuropathy (CIPN) is a common dose-limiting side effect of several chemotherapeutic agents. Despite large amounts of human and animal studies, there is no sufficiently effective pharmacological treatment for CIPN. Although reducing pain is often a focus of CIPN treatment, remarkably few analgesics have been tested for this indication in clinical trials. We conducted a systematic review and meta-analyses regarding the effects of analgesics on stimulus evoked pain-like behaviour during CIPN in animal models. This will form a scientific basis for the development of prospective human clinical trials. A comprehensive search identified forty-six studies. Risk of bias (RoB) analyses revealed that the design and conduct of the included experiments were poorly reported, and therefore RoB was unclear in most studies. Meta-analyses showed that administration of analgesics significantly increases pain threshold for mechanical (SMD: 1.68 [1.41; 1.82]) and cold (SMD: 1. 41 [0.99; 1.83]) evoked pain. Subgroup analyses revealed that dexmedetomidine, celecoxib, fentanyl, morphine, oxycodone and tramadol increased the pain threshold for mechanically evoked pain, and lidocaine and morphine for cold evoked pain. Altogether, this meta-analysis shows that there is ground to investigate the use of morphine in clinical trials. Lidocaine, dexmedetomidine, celecoxib, fentanyl, oxycodone and tramadol might be good alternatives, but more animal-based research is necessary.
Collapse
Affiliation(s)
- Carlijn R Hooijmans
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands. .,Department for Health Evidence unit SYRCLE, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Derk Draper
- Department for Health Evidence unit SYRCLE, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mehmet Ergün
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gert Jan Scheffer
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Brandolini L, Castelli V, Aramini A, Giorgio C, Bianchini G, Russo R, De Caro C, d'Angelo M, Catanesi M, Benedetti E, Giordano A, Cimini A, Allegretti M. DF2726A, a new IL-8 signalling inhibitor, is able to counteract chemotherapy-induced neuropathic pain. Sci Rep 2019; 9:11729. [PMID: 31409858 PMCID: PMC6692352 DOI: 10.1038/s41598-019-48231-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common dose-limiting side effect of several anti-neoplastics and a main cause of sensory disturbances in cancer survivors, negatively impacting patients' quality of life. Peripheral nerve degeneration or small fibre neuropathy is generally accepted as the underlying mechanism in the development of CIPN. Recent evidence has contributed to clarify the determinant role of cytokines and chemokines in the process leading to neuronal hyperexcitability. Exposure to oxaliplatin triggers alterations in peripheral neuropathic pathways previously linked to IL-8 pathway. We investigated a novel selective inhibitor of IL-8 receptors, DF2726A, and showed its effects in counteracting CINP pathways, extending the relevance of the activation of IL-8 pathway to the class of platinum chemotherapeutics. Based on our results, we suggest that DF2726A might be a promising candidate for clinical treatment of CIPN conditions due to its efficacy and optimized pharmacokinetic/pharmacodynamic profile.
Collapse
Affiliation(s)
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Aramini
- Dompé Farmaceutici SpA, Via Campo di Pile, L'Aquila, Italy
| | | | | | - Roberto Russo
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Carmen De Caro
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Michele d'Angelo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Mariano Catanesi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Antonio Giordano
- Department of Medical Biotechnology, University of Siena, Siena, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, USA
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy. .,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, Philadelphia, USA.
| | | |
Collapse
|
8
|
Meng J, Zhang Q, Yang C, Xiao L, Xue Z, Zhu J. Duloxetine, a Balanced Serotonin-Norepinephrine Reuptake Inhibitor, Improves Painful Chemotherapy-Induced Peripheral Neuropathy by Inhibiting Activation of p38 MAPK and NF-κB. Front Pharmacol 2019; 10:365. [PMID: 31024320 PMCID: PMC6465602 DOI: 10.3389/fphar.2019.00365] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/25/2019] [Indexed: 02/05/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe, toxic side effect that frequently occurs in anticancer treatment and may result in discontinuation of treatment as well as a serious reduction in life quality. The CIPN incidence rate is as high as 85–90%. Unfortunately, there is currently no standard evidence-based CIPN treatment. In several clinical trials, it has been reported that duloxetine can improve CIPN pain induced by oxaliplatin (OXA) and paclitaxel (PTX); thus, The American Society of Clinical Oncology (ASCO) recommends duloxetine as the only potential treatment for CIPN. However, this guidance lacks the support of sufficient evidence. Our study shows that duloxetine markedly reduces neuropathic pain evoked by OXA or PTX. Duloxetine acts by inhibiting the activation of p38 phosphorylation, thus preventing the activation and nuclear translocation of the NF-κB transcription factor, reducing the inflammatory response and inhibiting nerve injury by regulating nerve growth factor (NGF). Furthermore, in this study, it is shown that duloxetine does not affect the antitumor activity of OXA or PTX. This study not only provides biological evidence to support the use of duloxetine as the first standard CIPN drug but will also lead to potential new targets for CIPN drug development.
Collapse
Affiliation(s)
- Jing Meng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou Medical University, Xuzhou, China
| | - Qiuyan Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lu Xiao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenzhen Xue
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Department of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
9
|
Shi DN, Yuan YT, Ye D, Kang LM, Wen J, Chen HP. MiR-183-5p Alleviates Chronic Constriction Injury-Induced Neuropathic Pain Through Inhibition of TREK-1. Neurochem Res 2018; 43:1143-1149. [PMID: 29736614 DOI: 10.1007/s11064-018-2529-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 01/04/2023]
Abstract
MicroRNAs have been implicated in nerve injury and neuropathic pain. In the previous study we had shown that miR-96 can attenuate neuropathic pain through inhibition of Nav1.3. In this study, we investigated the role of miR-183, a same cluster member of microRNA with miR-96, in neuropathic pain and its potential mechanisms. We found that the expression level of miR-183-5p in dorsal root ganglion was decreased with the development of neuropathic pain induced by chronic constriction sciatic nerve injury (CCI). By contrast, the TREK-1, a K+ channel, was increased. Further investigation identified that intrathecal injection of miR-183-5p mimic efficiently ameliorated neuropathic pain and inhibited the expression of TREK-1, a predicted target gene of miR-183-5p. Luciferase assays confirmed the binding of miR-183-5p and TREK-1. In addition, over-expression of TREK-1 blocked the roles of miR-183-5p in neuropathic pain. Our findings suggested that miR-183-5P participated in the regulation of CCI-induced neuropathic pain through inhibiting the expression of TREK-1.
Collapse
Affiliation(s)
- Dan-Ni Shi
- Department of Histology and Embryology, Medical College, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Yi-Tao Yuan
- Department of Histology and Embryology, Medical College, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China.,Nanchang Joint Programme, Queen Mary University of London, London, E1 4NS, UK
| | - Dan Ye
- School of Life Science, Jiangxi Science & Techology Normal University, Nanchang, 330013, People's Republic of China
| | - Lu-Mei Kang
- Department of Animal Science, Medical College, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Jing Wen
- Department of Histology and Embryology, Medical College, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China
| | - Hong-Ping Chen
- Department of Histology and Embryology, Medical College, Nanchang University, Bayi Road 461, Nanchang, 330006, People's Republic of China. .,Jiangxi Province Key Laboratory of Tumor Pathogen's and Molecular Pathology, 461 Bayi Road, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
10
|
Yan T, Zhang F, Sun C, Sun J, Wang Y, Xu X, Shi J, Shi G. miR-32-5p-mediated Dusp5 downregulation contributes to neuropathic pain. Biochem Biophys Res Commun 2017; 495:506-511. [PMID: 29108992 DOI: 10.1016/j.bbrc.2017.11.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 11/02/2017] [Indexed: 02/07/2023]
Abstract
Previous studies have demonstrated that microRNAs (miRNAs) play important roles in the pathogenesis of neuropathic pain. In the present study, we found that miR-32-5p was significantly upregulated in rats after spinal nerve ligation (SNL), specifically in the spinal microglia of rats with SNL. Functional assays showed that knockdown of miR-32-5p greatly suppressed mechanical allodynia and heat hyperalgesia, and decreased inflammatory cytokine (IL-1β, TNF-α and IL-6) protein expression in rats after SNL. Similarly, miR-32-5p knockdown alleviated cytokine production in lipopolysaccharide (LPS)-treated spinal microglial cells, whereas its overexpression had the opposite effect. Mechanistic investigations revealed Dual-specificity phosphatase 5 (Dusp5) as a direct target of miR-32-5p, which is involved in the miR-32-5p-mediated effects on neuropathic pain and neuroinflammation. We demonstrated for the first time that miR-32-5p promotes neuroinflammation and neuropathic pain development through regulation of Dusp5. Our findings highlight a novel contribution of miR-32-5p to the process of neuropathic pain, and suggest possibilities for the development of novel therapeutic options for neuropathic pain.
Collapse
Affiliation(s)
- Tingfei Yan
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Fuguo Zhang
- Department of Spine Surgery, Taizhou First People's Hospital, Taizhou 318020, China
| | - Chenxi Sun
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jingchuan Sun
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yuan Wang
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Ximing Xu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiangang Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Guodong Shi
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
11
|
Suarez-Mendez S, Tovilla-Zarate CA, Ortega-Varela LF, Bermudez-Ocaña DY, Blé-Castillo JL, González-Castro TB, Zetina-Esquivel AM, Diaz-Zagoya JC, Esther Juárez-Rojop I. Isobolographic Analyses of Proglumide-Celecoxib Interaction in Rats with Painful Diabetic Neuropathy. Drug Dev Res 2017; 78:116-123. [DOI: 10.1002/ddr.21382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/08/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Samuel Suarez-Mendez
- Division Académica de Ciencias de la Salud; Universidad Juárez Autónoma de Tabasco; Villahermosa Tabasco México
| | - Carlos A. Tovilla-Zarate
- Division Académica Multidisciplinaria de Comalcalco; Universidad Juárez Autónoma de Tabasco; Tabasco México
| | - Luis F. Ortega-Varela
- Escuela de Enfermería y Salud Pública; Universidad Michoacana de San Nicolás de Hidalgo; Morelia Michoacán México
| | - Deysi Y. Bermudez-Ocaña
- Division Académica Multidisciplinaria de Comalcalco; Universidad Juárez Autónoma de Tabasco; Tabasco México
| | - Jorge L. Blé-Castillo
- Division Académica de Ciencias de la Salud; Universidad Juárez Autónoma de Tabasco; Villahermosa Tabasco México
| | - Thelma B. González-Castro
- Division Académica Multidisciplinaria de Jalpa de Méndez; Universidad Juárez Autónoma de Tabasco; Tabasco México
| | - Alma M. Zetina-Esquivel
- Division Académica de Ciencias de la Salud; Universidad Juárez Autónoma de Tabasco; Villahermosa Tabasco México
| | - Juan C. Diaz-Zagoya
- Departamento de Bioquímica; Facultad de Medicina, UNAM; Ciudad de México México
| | - Isela Esther Juárez-Rojop
- Division Académica de Ciencias de la Salud; Universidad Juárez Autónoma de Tabasco; Villahermosa Tabasco México
| |
Collapse
|