1
|
Zanardini M, Zhang W, Habibi HR. Arginine Vasotocin Directly Regulates Spermatogenesis in Adult Zebrafish ( Danio rerio) Testes. Int J Mol Sci 2024; 25:6564. [PMID: 38928267 PMCID: PMC11204076 DOI: 10.3390/ijms25126564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The neuropeptide vasopressin is known for its regulation of osmotic balance in mammals. Arginine vasotocin (AVT) is a non-mammalian homolog of this neuropeptide that is present in fish. Limited information suggested that vasopressin and its homologs may also influence reproductive function. In the present study, we investigated the direct effect of AVT on spermatogenesis, using zebrafish as a model organism. Results demonstrate that AVT and its receptors (avpr1aa, avpr2aa, avpr1ab, avpr2ab, and avpr2l) are expressed in the zebrafish brain and testes. The direct action of AVT on spermatogenesis was investigated using an ex vivo culture of mature zebrafish testes for 7 days. Using histological, morphometric, and biochemical approaches, we observed direct actions of AVT on zebrafish testicular function. AVT treatment directly increased the number of spermatozoa in an androgen-dependent manner, while reducing mitotic cells and the proliferation activity of type B spermatogonia. The observed stimulatory action of AVT on spermiogenesis was blocked by flutamide, an androgen receptor antagonist. The present results support the novel hypothesis that AVT stimulates short-term androgen-dependent spermiogenesis. However, its prolonged presence may lead to diminished spermatogenesis by reducing the proliferation of spermatogonia B, resulting in a diminished turnover of spermatogonia, spermatids, and spermatozoa. The overall findings offer an insight into the physiological significance of vasopressin and its homologs in vertebrates as a contributing factor in the multifactorial regulation of male reproduction.
Collapse
Affiliation(s)
- Maya Zanardini
- Department of Biological Sciences, University of Calgary, Calgary, AB 2500, Canada;
| | - Weimin Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China;
| | - Hamid R. Habibi
- Department of Biological Sciences, University of Calgary, Calgary, AB 2500, Canada;
| |
Collapse
|
2
|
Alahmari SS, Goldgof D, Hall LO, Mouton PR. A Review of Nuclei Detection and Segmentation on Microscopy Images Using Deep Learning With Applications to Unbiased Stereology Counting. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7458-7477. [PMID: 36327184 DOI: 10.1109/tnnls.2022.3213407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The detection and segmentation of stained cells and nuclei are essential prerequisites for subsequent quantitative research for many diseases. Recently, deep learning has shown strong performance in many computer vision problems, including solutions for medical image analysis. Furthermore, accurate stereological quantification of microscopic structures in stained tissue sections plays a critical role in understanding human diseases and developing safe and effective treatments. In this article, we review the most recent deep learning approaches for cell (nuclei) detection and segmentation in cancer and Alzheimer's disease with an emphasis on deep learning approaches combined with unbiased stereology. Major challenges include accurate and reproducible cell detection and segmentation of microscopic images from stained sections. Finally, we discuss potential improvements and future trends in deep learning applied to cell detection and segmentation.
Collapse
|
3
|
Mokarrami S, Jahanshahi M, Elyasi L, Badelisarkala H, Khalili M. Naringin prevents the reduction of the number of neurons and the volume of CA1 in a scopolamine-induced animal model of Alzheimer's disease (AD): a stereological study. Int J Neurosci 2024; 134:364-371. [PMID: 35861379 DOI: 10.1080/00207454.2022.2102981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 10/24/2022]
Affiliation(s)
- S Mokarrami
- Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - M Jahanshahi
- Department of Anatomy, Faculty of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - L Elyasi
- Department of Anatomy, Faculty of Medicine, Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - H Badelisarkala
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - M Khalili
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
4
|
Morera H, Dave P, Kolinko Y, Alahmari S, Anderson A, Denham G, Davis C, Riano J, Goldgof D, Hall LO, Harry GJ, Mouton PR. A novel deep learning-based method for automatic stereology of microglia cells from low magnification images. Neurotoxicol Teratol 2024; 102:107336. [PMID: 38402997 DOI: 10.1016/j.ntt.2024.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Microglial cells mediate diverse homeostatic, inflammatory, and immune processes during normal development and in response to cytotoxic challenges. During these functional activities, microglial cells undergo distinct numerical and morphological changes in different tissue volumes in both rodent and human brains. However, it remains unclear how these cytostructural changes in microglia correlate with region-specific neurochemical functions. To better understand these relationships, neuroscientists need accurate, reproducible, and efficient methods for quantifying microglial cell number and morphologies in histological sections. To address this deficit, we developed a novel deep learning (DL)-based classification, stereology approach that links the appearance of Iba1 immunostained microglial cells at low magnification (20×) with the total number of cells in the same brain region based on unbiased stereology counts as ground truth. Once DL models are trained, total microglial cell numbers in specific regions of interest can be estimated and treatment groups predicted in a high-throughput manner (<1 min) using only low-power images from test cases, without the need for time and labor-intensive stereology counts or morphology ratings in test cases. Results for this DL-based automatic stereology approach on two datasets (total 39 mouse brains) showed >90% accuracy, 100% percent repeatability (Test-Retest) and 60× greater efficiency than manual stereology (<1 min vs. ∼ 60 min) using the same tissue sections. Ongoing and future work includes use of this DL-based approach to establish clear neurodegeneration profiles in age-related human neurological diseases and related animal models.
Collapse
Affiliation(s)
- Hunter Morera
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA.
| | - Palak Dave
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Yaroslav Kolinko
- Department of Histology and Embryology & Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Saeed Alahmari
- Department of Computer Science, Najran University, Najran 66462, Saudi Arabia
| | | | | | | | | | - Dmitry Goldgof
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Lawrence O Hall
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA
| | - G Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, NIEHS/NIH, Research Triangle Park, NC 27709, USA
| | - Peter R Mouton
- Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA; SRC Biosciences, Tampa, FL 33606, USA.
| |
Collapse
|
5
|
Chang FP, Hsu TR, Hung SC, Sung SH, Yu WC, Niu DM, Najafian B. Cardiomyocyte Globotriaosylceramide Accumulation in Adult Male Patients with Fabry Disease and IVS4 + 919G>A GLA Mutation is Progressive with Age and Correlates with Left Ventricular Hypertrophy and Reduced Left Ventricular Ejection Fraction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.09.23298489. [PMID: 38168318 PMCID: PMC10760261 DOI: 10.1101/2023.12.09.23298489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Background While cardiovascular complications are the most common cause of mortality in Fabry disease, the relationship between globotriaosylceramide (GL-3) accumulation, the hallmark of Fabry cardiomyopathy, and cardiac hypertrophy has not been fully elucidated. Methods We developed unbiased stereology protocols to quantify the ultrastrcture of Fabry cardiomyopathy. Endomyocardial biopsies from 10 adult male enzyme replacement therapy naïve Fabry patients with IVS4 + 919G>A GLA mutation were studied. The findings were correlated with cardiac MRI and clinical data. Results Ultrastructural parameters showed significant relationships with key imaging and clinical and functional variables. Average cardiomyocyte volume and GL-3 volume per cardiomyocyte were progressively increased with age. Eighty-four percent of left ventricular mass index (LVMI) variability was explained by cardiomyocyte nuclear volume, age and plasma globotriaosylsphingosine with cardiomyocyte nuclear volume being the only independent predictor of LVMI. Septal thickness was directly and left ventricular ejection fraction (LVEF) was inversely correlated with cardiomyocyte GL-3 accumulation. Sixty-five percent of left ventricular ejection fraction (LVEF) variability was explained by cardiomyocyte GL3 volume, serum α-galactosidase-A activity and age with cardiomyocyte GL3 volume being the only independent predictor of LVEF. Residual α-galactosidase-A activity was directly correlated with myocardial microvasculature density. Conclusions The unbiased stereological methods introduced in this study unraveled novel relationships between cardiomyocyte structure and important imaging and clinical parameters. These novel tools can help better understand Fabry cardiomyopathy pathophysiology.
Collapse
Affiliation(s)
- Fu-Pang Chang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Ting-Rong Hsu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Sheng-Che Hung
- Division of Neuroradiology, Department of Radiology, University of North Carolina Chapel Hill, North Carolina, USA
- Biomedical Research Imaging Center, University of North Carolina Chapel Hill, North Carolina, USA
| | - Shih-Hsien Sung
- Department of Internal Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Wen-Chung Yu
- Department of Internal Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Dau-Ming Niu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Behzad Najafian
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, USA
| |
Collapse
|
6
|
Burkert N, Roy S, Häusler M, Wuttke D, Müller S, Wiemer J, Hollmann H, Oldrati M, Ramirez-Franco J, Benkert J, Fauler M, Duda J, Goaillard JM, Pötschke C, Münchmeyer M, Parlato R, Liss B. Deep learning-based image analysis identifies a DAT-negative subpopulation of dopaminergic neurons in the lateral Substantia nigra. Commun Biol 2023; 6:1146. [PMID: 37950046 PMCID: PMC10638391 DOI: 10.1038/s42003-023-05441-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Here we present a deep learning-based image analysis platform (DLAP), tailored to autonomously quantify cell numbers, and fluorescence signals within cellular compartments, derived from RNAscope or immunohistochemistry. We utilised DLAP to analyse subtypes of tyrosine hydroxylase (TH)-positive dopaminergic midbrain neurons in mouse and human brain-sections. These neurons modulate complex behaviour, and are differentially affected in Parkinson's and other diseases. DLAP allows the analysis of large cell numbers, and facilitates the identification of small cellular subpopulations. Using DLAP, we identified a small subpopulation of TH-positive neurons (~5%), mainly located in the very lateral Substantia nigra (SN), that was immunofluorescence-negative for the plasmalemmal dopamine transporter (DAT), with ~40% smaller cell bodies. These neurons were negative for aldehyde dehydrogenase 1A1, with a lower co-expression rate for dopamine-D2-autoreceptors, but a ~7-fold higher likelihood of calbindin-d28k co-expression (~70%). These results have important implications, as DAT is crucial for dopamine signalling, and is commonly used as a marker for dopaminergic SN neurons.
Collapse
Affiliation(s)
- Nicole Burkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Shoumik Roy
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
| | - Max Häusler
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | | | - Sonja Müller
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Wiemer
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Helene Hollmann
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Marvin Oldrati
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jorge Ramirez-Franco
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Julia Benkert
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Michael Fauler
- Institute of General Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Johanna Duda
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Jean-Marc Goaillard
- UMR_S 1072, Aix Marseille Université, INSERM, Faculté de Médecine Secteur Nord, Marseille, France
- INT, Aix Marseille Université, CNRS, Campus Santé Timone, Marseille, France
| | - Christina Pötschke
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
| | - Moritz Münchmeyer
- Wolution GmbH & Co. KG, 82152, Munich, Germany
- Department of Physics, University of Wisconsin-Madison, Madison, WI, USA
| | - Rosanna Parlato
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany
- Division of Neurodegenerative Disorders, Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translational Neurosciences, Heidelberg University, 68167, Mannheim, Germany
| | - Birgit Liss
- Institute of Applied Physiology, Medical Faculty, Ulm University, 89081, Ulm, Germany.
- Linacre College & New College, Oxford University, OX1 2JD, Oxford, UK.
| |
Collapse
|
7
|
Lund A, Andersen KJ, Meier M, Pedersen MI, Knudsen AR, Kirkegård J, Mortensen FV, Nyengaard JR. Biochemical and morphological responses to post-hepatectomy liver failure in rats. Sci Rep 2023; 13:13544. [PMID: 37598250 PMCID: PMC10439910 DOI: 10.1038/s41598-023-40736-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023] Open
Abstract
The upper limit for partial hepatectomy (PH) in rats is 90%, which is associated with an increased risk of post-hepatectomy liver failure (PHLF), correlating with high mortality. Sixty-eight rats were randomized to 90% PH, sham operation, or no surgery. Further block randomization was performed to determine the time of euthanasia, whether 12, 24, or 48 h after surgery. A general distress score (GDS) was calculated to distinguish between rats with reversible (GDS < 10) and irreversible PHLF (GDS ≥ 10). At euthanasia, the liver remnant and blood were collected. Liver-specific biochemistry and regeneration ratio were measured. Hepatocyte proliferation and volume were estimated using stereological methods. All rats subjected to 90% experienced biochemical PHLF. The biochemical and morphological liver responses did not differ between the groups until 48 h after surgery. At 48 h, liver regeneration and function were significantly improved in survivors. The peak mean regeneration ratio was 15% for rats with irreversible PHLF compared to 26% for rats with reversible PHLF. The 90% PH rat model was associated with PHLF and high mortality. Irreversible PHLF was characterized by impaired liver regeneration capacity and an insufficient ability to metabolize ammonia.
Collapse
Affiliation(s)
- Andrea Lund
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark.
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Kasper Jarlhelt Andersen
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Michelle Meier
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Marie Ingemann Pedersen
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Anders Riegels Knudsen
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Kirkegård
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Frank Viborg Mortensen
- Department of Surgery, Section for Upper Gastrointestinal and Hepato-Pancreato-Biliary Surgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 35, 8200, Aarhus N, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jens Randel Nyengaard
- Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Pathology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Birzle C, Schrader H, Blutke A, Ferling H, Scholz-Göppel K, Wanke R, Schwaiger J. Detection of Diclofenac-Induced Alterations in Rainbow Trout (Oncorhynchus mykiss) Using Quantitative Stereological Methods. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:859-872. [PMID: 36705425 DOI: 10.1002/etc.5573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/26/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
In 2013, the nonsteroidal anti-inflammatory drug diclofenac (DCF) was included in the watch list for emerging pollutants under the European Union Water Framework Directive. Frequently, monitoring data revealed DCF concentrations in surface waters exceeding the proposed environmental quality standards of 0.04 µg L-1 and 0.126 µg L-1 . In recent literature, the possible effects of DCF on fish are discussed controversially. To contribute to a realistic risk assessment of DCF, a 28-day exposure experiment was carried on rainbow trout (Oncorhynchus mykiss). To warrant reliability of data, experiments were conducted considering the Criteria for Reporting and Evaluating Ecotoxicity Data. The test concentrations of DCF used (0.1, 0.5, 1, 5, 25, and 100 µg L-1 ) also included environmentally relevant concentrations. The lowest-observed-effect concentration (LOEC) for a significant decrease in the plasma concentrations of the DCF biomarker prostaglandin E2 was 0.5 µg L-1 (male fish). For objective evaluation of relevant histomorphological parameters of gills and trunk kidneys, unbiased quantitative stereological methods were applied. In the gills, significant increases in the thickness of the secondary lamella and in the true harmonic mean of barrier thickness in secondary lamellae were present at DCF concentrations of 25 µg L-1 and 100 µg L-1 . In the trunk kidneys, the absolute and relative volumes of nephrons were significantly decreased, paralleled by a significant increase of the volume of the interstitial renal tissue. With regard to quantitative histomorphological alterations in the trunk kidney, the observed LOEC was 0.5 µg L-1 . The quantitative histomorphological analyses that were conducted allow identification and objective quantification of even subtle but significant morphological effects and thus provide an important contribution for the comparability of study results for the determination of no-observed-effect concentrations (NOEC). Environ Toxicol Chem 2023;42:859-872. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Christoph Birzle
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Hannah Schrader
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center of Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hermann Ferling
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Karin Scholz-Göppel
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center of Clinical Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Julia Schwaiger
- Bavarian Environment Agency, Unit Aquatic Ecotoxicology and Microbial Ecology, Wielenbach, Germany
| |
Collapse
|
9
|
Esmaili Z, Naseh M, Karimi F, Moosavi M. A stereological study reveals nanoscale-alumina induces cognitive dysfunction in mice related to hippocampal structural changes. Neurotoxicology 2022; 91:245-253. [DOI: 10.1016/j.neuro.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/24/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
|
10
|
Jakobsen SR, Hansen IB, Harders SW, Thomsen AH, Pedersen CCE, Boel LWT, Hansen K. Quantitative analysis of pulmonary structures in PMCT; Stereological comparison of drowning compared to opioid-overdose cases. FORENSIC IMAGING 2022. [DOI: 10.1016/j.fri.2022.200486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Kader M, Weyer C, Avila A, Stealey S, Sell S, Zustiak SP, Buckner S, McBride-Gagyi S, Jelliss PA. Synthesis and Characterization of BaSO4-CaCO3-Alginate Nanocomposite Materials as Contrast Agents for Fine Vascular Imaging. ACS MATERIALS AU 2022; 2:260-268. [PMID: 36855388 PMCID: PMC9888639 DOI: 10.1021/acsmaterialsau.1c00070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microcomputed tomography is an important technique for distinguishing the vascular network from tissues with similar X-ray attenuation. Here, we describe a composite of barium sulfate (BaSO4) nanoparticles, calcium carbonate (CaCO3) nanoparticles, and alginate that provides improved performance over microscale BaSO4 particles, which are currently used clinically as X-ray contrast agents. BaSO4 and CaCO3 nanoparticles were synthesized using a polyol method with tetraethylene glycol as solvent and capping agent. The nanoparticles show good colloidal stability in aqueous solutions. A deliverable nanocomposite gel contrast agent was produced by encapsulation of the BaSO4 and CaCO3 nanoparticles in an alginate gel matrix. The gelation time was controlled by addition of d-(+)-gluconic acid δ-lactone, which controls the rate of dissolution of the CaCO3 nanoparticles that produce Ca2+ which cross-links the gel. Rapid cross-linking of the gel by Ba2+ was minimized by producing BaSO4 nanoparticles with an excess of surface sulfate. The resulting BaSO4-CaCO3 nanoparticle alginate gel mechanical properties were characterized, including the gel storage modulus, peak stress and elastic modulus, and radiodensity. The resulting nanocomposite has good viscosity control and good final gel stiffness. The nanocomposite has gelation times between 30 and 35 min, adequate for full body perfusion. This is the first nanoscale composite of a radiopaque metal salt to be developed in combination with an alginate hydrogel and designed for medical perfusion and vascular imaging applications.
Collapse
Affiliation(s)
- Mohammad
S. Kader
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Conner Weyer
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Abigail Avila
- Department
of Biomedical Engineering, Parks College of Engineering, Aviation
and Technology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Samuel Stealey
- Department
of Biomedical Engineering, Parks College of Engineering, Aviation
and Technology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Scott Sell
- Department
of Biomedical Engineering, Parks College of Engineering, Aviation
and Technology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Silviya P. Zustiak
- Department
of Biomedical Engineering, Parks College of Engineering, Aviation
and Technology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Steven Buckner
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States,
| | - Sara McBride-Gagyi
- Department
of Orthopaedic Surgery, Saint Louis University
School of Medicine, 1402
South Grand, St. Louis, Missouri 63110, United States,
| | - Paul A. Jelliss
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States,
| |
Collapse
|
12
|
Geertsma HM, Ricke KM, Rousseaux MWC. Assessment of Dopaminergic Neurodegeneration in Mice. Methods Mol Biol 2022; 2515:151-169. [PMID: 35776351 DOI: 10.1007/978-1-0716-2409-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neuron death is a key feature of neurological disorders like Alzheimer's or Parkinson's disease (PD). As a result, analysis of neurodegeneration is often considered a central experiment in the postmortem characterization of preclinical PD animal models. Stereology provides a precise estimate of particles, like neurons, in three-dimensional objects, like the brain, and is the gold standard quantification approach for the assessment of neuron survival in neurodegenerative disease research. Here, we provide a detailed step-by-step guide for the quantification of dopaminergic neurons in the substantia nigra pars compacta, a brain area prone to neuron loss in PD. In addition, we outline the protocol for the analysis of the dopaminergic terminals in the striatum, the projection area of midbrain dopaminergic neurons, as a readout for the integrity of the nigrostriatal projections.
Collapse
Affiliation(s)
- Haley M Geertsma
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Konrad M Ricke
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Maxime W C Rousseaux
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
13
|
Babinski MDSD, Pires LAS, Fonseca Junior A, Manaia JHM, Babinski MA. Fibrous components of extracellular matrix and smooth muscle of the vaginal wall in young and postmenopausal women: Stereological analysis. Tissue Cell 2021; 74:101682. [PMID: 34800880 DOI: 10.1016/j.tice.2021.101682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/25/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
The anterior vaginal wall is subject to many diseases, such as pelvic organ prolapse. The pathophysiology of this illness is multifactorial, and as such, structural components of the vagina are involved. Furthermore, it is more prevalent in older women. There is a lack of data in the literature regarding the extracellular matrix components of the vaginal wall and its changes with aging. The work presented herein aims to perform a stereological study of the extracellular matrix in young and old women. It was observed a decrease of the volumetric density of smooth muscle (45.5 ± 3.2 % and 32.8 ± 5.8 % for the G1 and G2 samples, respectively) and an increase of collagen and elastic fibers with age (35.9 ± 2.1 % and 54.1 ± 5.9 % for the G1 and G2, respectively) in the mucosa of the vaginal wall. These results could help to better understand the pathophysiology of pelvic organ prolapse concerning the aging process.
Collapse
Affiliation(s)
- Monique da Silva Dias Babinski
- Experimental Morphology Research Unit, Morphology Department, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Medical Sciences Post Graduation Program, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Lucas Alves Sarmento Pires
- Experimental Morphology Research Unit, Morphology Department, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Medical Sciences Post Graduation Program, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Albino Fonseca Junior
- Experimental Morphology Research Unit, Morphology Department, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Medical Sciences Post Graduation Program, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Jorge Henrique Martins Manaia
- Experimental Morphology Research Unit, Morphology Department, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Medical Sciences Post Graduation Program, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marcio Antonio Babinski
- Experimental Morphology Research Unit, Morphology Department, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil; Medical Sciences Post Graduation Program, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Fortin-Trahan R, Lemirre T, Santschi EM, Janes JG, Richard H, Fogarty U, Beauchamp G, Girard CA, Laverty S. Osteoclast density is not increased in bone adjacent to radiolucencies (cysts) in juvenile equine medial femoral condyles. Equine Vet J 2021; 54:989-998. [PMID: 34716940 DOI: 10.1111/evj.13530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND There is a knowledge gap about how equine MFC subchondral radiolucencies (SR) arise and evolve. Osteoclasts are believed to have a role but have not been studied in situ. OBJECTIVES To measure and compare osteoclast density and the percentage of chondroclasts in healthy and MFC SR specimens from juvenile Thoroughbreds. STUDY DESIGN Cadaveric study. METHODS Medial femoral condyles (MFC) from a tissue bank of equine stifles were studied. Inclusion criteria were MFCs (≤8 months old) with a computed tomography SR lesion and histological focal failure of endochondral ossification (L group). Contralateral, lesion-free, MFCs were a control group (CC). Osteochondral slabs were cut through the lesion (L), a healthy site immediately caudal to the lesion, (internal control; IC) and the contralateral, site-matched controls (CC). Histological sections were immunostained with Cathepsin K for osteoclast counting. Osteoclasts in contact with the growth cartilage (chondroclasts) were also counted. The sections were segmented into regions of interest (ROI) at different depths in the subchondral bone: ROI1 (0-1 mm), ROI2 (1-3 mm) and ROI3 (3-6 mm). Osteoclasts were counted and the bone area was measured in each ROI to calculate their density. Chondroclasts were counted in ROI1 . RESULTS Sections were studied from L and IC (n = 6) and CC sites (n = 5). Osteoclast density was significantly higher in ROI1 when compared with ROI3 in all groups. Although higher osteoclast density was measured in ROI1 in the L group, no significant differences were detected when compared with control ROIs. The proportion of chondroclasts in ROI1 was lower in the L sections when compared with controls but no significant differences were detected. MAIN LIMITATIONS Limited sample size. CONCLUSIONS Osteoclasts are important actors in MFC subchondral bone development, digesting both growth cartilage (chondroclasts) and bone, but the pathophysiology of early MFC SRs cannot be explained solely by an increased osteoclast presence in the subchondral bone.
Collapse
Affiliation(s)
- Rosalie Fortin-Trahan
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Thibaut Lemirre
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Elizabeth M Santschi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Jennifer G Janes
- Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Hélène Richard
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | | | - Guy Beauchamp
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Christiane A Girard
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| | - Sheila Laverty
- Comparative Orthopaedic Research Laboratory, Département de Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Quebec, Canada
| |
Collapse
|
15
|
Zuraw A, Aeffner F. Whole-slide imaging, tissue image analysis, and artificial intelligence in veterinary pathology: An updated introduction and review. Vet Pathol 2021; 59:6-25. [PMID: 34521285 DOI: 10.1177/03009858211040484] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Since whole-slide imaging has been commercially available for over 2 decades, digital pathology has become a constantly expanding aspect of the pathology profession that will continue to significantly impact how pathologists conduct their craft. While some aspects, such as whole-slide imaging for archiving, consulting, and teaching, have gained broader acceptance, other facets such as quantitative tissue image analysis and artificial intelligence-based assessments are still met with some reservations. While most vendors in this space have focused on diagnostic applications, that is, viewing one or few slides at a time, some are developing solutions tailored more specifically to the various aspects of veterinary pathology including updated diagnostic, discovery, and research applications. This has especially advanced the use of digital pathology in toxicologic pathology and drug development, for primary reads as well as peer reviews. It is crucial that pathologists gain a deeper understanding of digital pathology and tissue image analysis technology and their applications in order to fully use these tools in a way that enhances and improves the pathologist's assessment as well as work environment. This review focuses on an updated introduction to the basics of digital pathology and image analysis and introduces emerging topics around artificial intelligence and machine learning.
Collapse
Affiliation(s)
| | - Famke Aeffner
- Amgen Inc, Amgen Research, South San Francisco, CA, USA
| |
Collapse
|
16
|
Vos DRN, Ellis SR, Balluff B, Heeren RMA. Experimental and Data Analysis Considerations for Three-Dimensional Mass Spectrometry Imaging in Biomedical Research. Mol Imaging Biol 2021; 23:149-159. [PMID: 33025328 PMCID: PMC7910367 DOI: 10.1007/s11307-020-01541-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/12/2020] [Accepted: 09/10/2020] [Indexed: 10/26/2022]
Abstract
Mass spectrometry imaging (MSI) enables the visualization of molecular distributions on complex surfaces. It has been extensively used in the field of biomedical research to investigate healthy and diseased tissues. Most of the MSI studies are conducted in a 2D fashion where only a single slice of the full sample volume is investigated. However, biological processes occur within a tissue volume and would ideally be investigated as a whole to gain a more comprehensive understanding of the spatial and molecular complexity of biological samples such as tissues and cells. Mass spectrometry imaging has therefore been expanded to the 3D realm whereby molecular distributions within a 3D sample can be visualized. The benefit of investigating volumetric data has led to a quick rise in the application of single-sample 3D-MSI investigations. Several experimental and data analysis aspects need to be considered to perform successful 3D-MSI studies. In this review, we discuss these aspects as well as ongoing developments that enable 3D-MSI to be routinely applied to multi-sample studies.
Collapse
Affiliation(s)
- D R N Vos
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - S R Ellis
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - B Balluff
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - R M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
17
|
Theobalt N, Hofmann I, Fiedler S, Renner S, Dhom G, Feuchtinger A, Walch A, Hrabĕ de Angelis M, Wolf E, Wanke R, Blutke A. Unbiased analysis of obesity related, fat depot specific changes of adipocyte volumes and numbers using light sheet fluorescence microscopy. PLoS One 2021; 16:e0248594. [PMID: 33725017 PMCID: PMC7963095 DOI: 10.1371/journal.pone.0248594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/01/2021] [Indexed: 12/26/2022] Open
Abstract
In translational obesity research, objective assessment of adipocyte sizes and numbers is essential to characterize histomorphological alterations linked to obesity, and to evaluate the efficacies of experimental medicinal or dietetic interventions. Design-based quantitative stereological techniques based on the analysis of 2D-histological sections provide unbiased estimates of relevant 3D-parameters of adipocyte morphology, but often involve complex and time-consuming tissue processing and analysis steps. Here we report the application of direct 3D light sheet fluorescence microscopy (LSFM) for effective and accurate analysis of adipocyte volumes and numbers in optically cleared adipose tissue samples from a porcine model of diet-induced obesity (DIO). Subcutaneous and visceral adipose tissue samples from DIO-minipigs and lean controls were systematically randomly sampled, optically cleared with 3DISCO (3-dimensional imaging of solvent cleared organs), stained with eosin, and subjected to LSFM for detection of adipocyte cell membrane autofluorescence. Individual adipocytes were unbiasedly sampled in digital 3D reconstructions of the adipose tissue samples, and their individual cell volumes were directly measured by automated digital image analysis. Adipocyte numbers and mean volumes obtained by LSFM analysis did not significantly differ from the corresponding values obtained by unbiased quantitative stereological analysis techniques performed on the same samples, thus proving the applicability of LSFM for efficient analysis of relevant morphological adipocyte parameters. The results of the present study demonstrate an adipose tissue depot specific plasticity of adipocyte growth responses to nutrient oversupply. This was characterized by an exclusively hypertrophic growth of visceral adipocytes, whereas adipocytes in subcutaneous fat tissue depots also displayed a marked (hyperplastic) increase in cell number. LSFM allows for accurate and efficient determination of relevant quantitative morphological adipocyte parameters. The applied stereological methods and LSFM protocols are described in detail and can serve as a guideline for unbiased quantitative morphological analyses of adipocytes in other studies and species.
Collapse
Affiliation(s)
- Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Simone Renner
- Gene Center and Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Georg Dhom
- Gene Center and Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Eckhard Wolf
- Gene Center and Department of Veterinary Sciences, Chair for Molecular Animal Breeding and Biotechnology, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Veterinary Sciences, Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
18
|
Conventional microscopy versus digital image analysis for histopathologic evaluation of immune cells in the endometrium. J Reprod Immunol 2021; 145:103294. [PMID: 33676064 DOI: 10.1016/j.jri.2021.103294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/13/2021] [Accepted: 02/16/2021] [Indexed: 11/23/2022]
Abstract
In the search for a reliable biomarker able to diagnose immunological causes of infertility, uterine immune cells have been widely investigated. As a result, heterogeneous methods and cutoff values of what constitutes an aberrant number of immune cells have been reported, and a standardized method for quantification is needed. The objective of this study was to compare methods for quantification of immune cells visualized with immunohistochemistry in the endometrium of women in fertility treatment. Evaluation of the density of CD56+, CD16+ and CD163+ cells by conventional microscopy on a semiquantitative scale (low, medium and high) was compared to a continuous count using digital image analysis (DIA) reported as percentage positive cells out of the total number of stromal cells and number of positive cells per mm2, respectively. We previously reported the CD56/CD16 ratio as a possible prognostic marker, and therefore the ratios of CD56/CD16 were compared using two different methods for selecting fields for counting with DIA: one method using principles of systematic random sampling, where glands were excluded, and one method analyzing large parts of the tissue including glands. A significant association between conventional microscopy and DIA was found when the semiquantitative scale was compared to medians of positive cells in CD56, CD16 and CD163, respectively, p < 0.001. A systematic significant difference in the ratios of CD56/CD16 was found when comparing the two methods for field selection, p < 0.001. To determine the possible use of these methods, more knowledge of the correlation to clinical outcome is warranted.
Collapse
|
19
|
Matsche MA, Blazer VS, Pulster EL, Mazik PM. Biological and anthropogenic influences on macrophage aggregates in white perch Morone americana from Chesapeake Bay, USA. DISEASES OF AQUATIC ORGANISMS 2021; 143:79-100. [PMID: 33570042 DOI: 10.3354/dao03555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The response of macrophage aggregates in fish to a variety of environmental stressors has been useful as a biomarker of exposure to habitat degradation. Total volume of macrophage aggregates (MAV) was estimated in the liver and spleen of white perch Morone americana from Chesapeake Bay using stereological approaches. Hepatic and splenic MAV were compared between fish populations from the rural Choptank River (n = 122) and the highly urbanized Severn River (n = 131). Hepatic and splenic MAV increased with fish age, were greater in females from the Severn River only, and were significantly greater in fish from the more polluted Severn River (higher concentrations of polycyclic aromatic hydrocarbons, organochlorine pesticides, and brominated diphenyl ethers). Water temperature and dissolved oxygen had a significant effect on organ volumes, but not on MAV. Age and river were most influential on hepatic and splenic MAV, suggesting that increased MAV in Severn River fish resulted from chronic exposures to higher concentrations of environmental contaminants and other stressors. Hemosiderin was abundant in 97% of spleens and was inversely related to fish condition and positively related to fish age and trematode infections. Minor amounts of hemosiderin were detected in 30% of livers and positively related to concentrations of benzo[a]pyrene metabolite equivalents in the bile. This study demonstrated that hepatic and splenic MAV were useful indicators in fish from the 2 tributaries with different land use characteristics and concentrations of environmental contaminants. More data are needed from additional tributaries with a wider gradient of environmental impacts to validate our results in this species.
Collapse
Affiliation(s)
- Mark A Matsche
- Maryland Department of Natural Resources, Cooperative Oxford Laboratory, 904 South Morris Street, Oxford, Maryland 21654, USA
| | | | | | | |
Collapse
|
20
|
Davis AS, Chang MY, Brune JE, Hallstrand TS, Johnson B, Lindhartsen S, Hewitt SM, Frevert CW. The Use of Quantitative Digital Pathology to Measure Proteoglycan and Glycosaminoglycan Expression and Accumulation in Healthy and Diseased Tissues. J Histochem Cytochem 2021; 69:137-155. [PMID: 32936035 PMCID: PMC7841698 DOI: 10.1369/0022155420959146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
Advances in reagents, methodologies, analytic platforms, and tools have resulted in a dramatic transformation of the research pathology laboratory. These advances have increased our ability to efficiently generate substantial volumes of data on the expression and accumulation of mRNA, proteins, carbohydrates, signaling pathways, cells, and structures in healthy and diseased tissues that are objective, quantitative, reproducible, and suitable for statistical analysis. The goal of this review is to identify and present how to acquire the critical information required to measure changes in tissues. Included is a brief overview of two morphometric techniques, image analysis and stereology, and the use of artificial intelligence to classify cells and identify hidden patterns and relationships in digital images. In addition, we explore the importance of preanalytical factors in generating high-quality data. This review focuses on techniques we have used to measure proteoglycans, glycosaminoglycans, and immune cells in tissues using immunohistochemistry and in situ hybridization to demonstrate the various morphometric techniques. When performed correctly, quantitative digital pathology is a powerful tool that provides unbiased quantitative data that are difficult to obtain with other methods.
Collapse
Affiliation(s)
- A Sally Davis
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas
| | - Mary Y Chang
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington
| | - Jourdan E Brune
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington
| | - Teal S Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington
| | - Brian Johnson
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Sarah Lindhartsen
- Department of Comparative Medicine, University of Washington, Seattle, Washington
| | - Stephen M Hewitt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Charles W Frevert
- Department of Comparative Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
- Center for Lung Biology, University of Washington at South Lake Union, Seattle, Washington
| |
Collapse
|
21
|
Pires LAS, Babinski MSD, Junior AF, Manaia JHM, Babinski MA. Changes in the extracellular matrix of the clitoris caused by aging: a stereological and comparative study. Arch Med Sci 2021; 17:1816-1818. [PMID: 34900065 PMCID: PMC8641520 DOI: 10.5114/aoms/143150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/18/2021] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION The clitoris is partially responsible for sexual arousal. The integrity of the extracellular matrix is essential for clitoral erection. Sexual dysfunction is a phenomenon associated with age. METHODS The clitoris of cadavers of 20- to 80-year-old women was excised and histologically processed. Stereological analysis was performed to quantify the volumetric density of collagen, elastic fibers, and smooth muscle. RESULTS A significant increase in collagen and a decrease in smooth muscle and elastic fibers were observed in older women. CONCLUSIONS In short, these changes caused by aging could contribute to female sexual dysfunction concerning clitoral orgasm.
Collapse
Affiliation(s)
- Lucas Alves Sarmento Pires
- Medical Sciences Post Graduation Program, Fluminense Federal University, Rio de Janeiro, Niterói, Brazil
| | | | - Albino Fonseca Junior
- Medical Sciences Post Graduation Program, Fluminense Federal University, Rio de Janeiro, Niterói, Brazil
| | | | - Marcio Antonio Babinski
- Medical Sciences Post Graduation Program, Fluminense Federal University, Rio de Janeiro, Niterói, Brazil
| |
Collapse
|
22
|
The contribution of mamillary body damage to Wernicke's encephalopathy and Korsakoff's syndrome. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:455-475. [PMID: 34225949 DOI: 10.1016/b978-0-12-820107-7.00029-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histopathological alterations of the mamillary bodies are the most conspicuous and the most consistent neuropathological features of several disorders that occur after severe thiamine deficiency, such as Wernicke's encephalopathy and Korsakoff's syndrome. Moreover, they are among the few abnormalities that are visible to the naked eye in these disorders. With a lifetime prevalence of approximately 1.3%, Wernicke's encephalopathy is by far the most frequent cause of damage to the mamillary bodies in humans. Still, there is a persisting uncertainty with regard to the development and the clinical consequences of this damage, because it is virtually impossible to study in isolation. As a rule, it always occurs alongside neuropathology in other subcortical gray matter structures, notably the medial thalamus. Converging evidence from other pathologies and animal experiments is needed to assess the clinical impact of mamillary body damage and to determine which functions can be attributed to these structures in healthy subjects. In this chapter, we describe the history and the current state of knowledge with regard to thiamine deficiency disorders and the contribution of mamillary body damage to their clinical presentations.
Collapse
|
23
|
Zuraw A, Staup M, Klopfleisch R, Aeffner F, Brown D, Westerling-Bui T, Rudmann D. Developing a Qualification and Verification Strategy for Digital Tissue Image Analysis in Toxicological Pathology. Toxicol Pathol 2020; 49:773-783. [PMID: 33371797 DOI: 10.1177/0192623320980310] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Digital tissue image analysis is a computational method for analyzing whole-slide images and extracting large, complex, and quantitative data sets. However, as with any analysis method, the quality of generated results is dependent on a well-designed quality control system for the entire digital pathology workflow. Such system requires clear procedural controls, appropriate user training, and involvement of specialists to oversee key steps of the workflow. The toxicologic pathologist is responsible for reporting data obtained by digital image analysis and therefore needs to ensure that it is correct. To accomplish that, they must understand the main parameters of the quality control system and should play an integral part in its conception and implementation. This manuscript describes the most common digital tissue image analysis end points and potential sources of analysis errors. In addition, it outlines recommended approaches for ensuring quality and correctness of results for both classical and machine-learning based image analysis solutions, as adapted from a recently proposed Food and Drug Administration regulatory framework for modifications to artificial intelligence/machine learning-based software as a medical device. These approaches are beneficial for any type of toxicopathologic study which uses the described end points and can be adjusted based on the intended use of the image analysis solution.
Collapse
Affiliation(s)
- Aleksandra Zuraw
- Pathology Department, 25913Charles River Laboratories, Frederick, MD, USA
| | - Michael Staup
- Pathology Department, 25913Charles River Laboratories, Durham, NC, USA
| | - Robert Klopfleisch
- Institute of Veterinary Pathology, 9166Freie Universität, Berlin, Germany
| | - Famke Aeffner
- Amgen Research, Translational Safety and Bioanalytical Sciences, Amgen Inc, South San Francisco, CA, USA
| | - Danielle Brown
- Pathology Department, 25913Charles River Laboratories, Durham, NC, USA
| | | | - Daniel Rudmann
- Pathology Department, 25913Charles River Laboratories, Ashland, OH, USA
| |
Collapse
|
24
|
Fiedler S, Wünnemann H, Hofmann I, Theobalt N, Feuchtinger A, Walch A, Schwaiger J, Wanke R, Blutke A. A practical guide to unbiased quantitative morphological analyses of the gills of rainbow trout (Oncorhynchus mykiss) in ecotoxicological studies. PLoS One 2020; 15:e0243462. [PMID: 33296424 PMCID: PMC7725368 DOI: 10.1371/journal.pone.0243462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Rainbow trout (Oncorhynchus mykiss) are frequently used as experimental animals in ecotoxicological studies, in which they are experimentally exposed to defined concentrations of test substances, such as heavy metals, pesticides, or pharmaceuticals. Following exposure to a broad variety of aquatic pollutants, early morphologically detectable toxic effects often manifest in alterations of the gills. Suitable methods for an accurate and unbiased quantitative characterization of the type and the extent of morphological gill alterations are therefore essential prerequisites for recognition, objective evaluation and comparison of the severity of gill lesions. The aim of the present guidelines is to provide practicable, standardized and detailed protocols for the application of unbiased quantitative stereological analyses of relevant morphological parameters of the gills of rainbow trout. These gill parameters inter alia include the total volume of the primary and secondary gill lamellae, the surface area of the secondary gill lamellae epithelium (i.e., the respiratory surface) and the thickness of the diffusion barrier. The featured protocols are adapted to fish of frequently used body size classes (300-2000 g). They include well-established, conventional sampling methods, probes and test systems for unbiased quantitative stereological analyses of light- and electron microscopic 2-D gill sections, as well as the application of modern 3-D light sheet fluorescence microscopy (LSFM) of optically cleared gill samples as an innovative, fast and efficient quantitative morphological analysis approach. The methods shown here provide a basis for standardized and representative state-of-the-art quantitative morphological analyses of trout gills, ensuring the unbiasedness and reproducibility, as well as the intra- and inter-study comparability of analyses results. Their broad implementation will therefore significantly contribute to the reliable identification of no observed effect concentration (NOEC) limits in ecotoxicological studies and, moreover, to limit the number of experimental animals by reduction of unnecessary repetition of experiments.
Collapse
Affiliation(s)
- Sonja Fiedler
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hannah Wünnemann
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Isabel Hofmann
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Natalie Theobalt
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Julia Schwaiger
- Unit 73 Aquatic Ecotoxicology, Microbial Ecology, Bavarian Environment Agency, Wielenbach, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
- * E-mail:
| |
Collapse
|
25
|
Ploux E, Freret T, Billard JM. d-serine in physiological and pathological brain aging. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1869:140542. [PMID: 32950692 DOI: 10.1016/j.bbapap.2020.140542] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/13/2020] [Indexed: 01/24/2023]
Abstract
Among aging-induced impairments, those affecting cognitive functions certainly represent one the most major challenge to face to improve elderly quality of life. In last decades, our knowledge on changes in the morphology and function of neuronal networks associated with normal and pathological brain aging has rapidly progressed, initiating the development of different pharmacological and behavioural strategies to alleviate cognitive aging. In particular, experimental evidences have accumulated indicating that the communication between neurons and its plasticity gradually weakens with aging. Because of its pivotal role for brain functional plasticity, the N-Methyl‑d-Aspartate receptor subtype of glutamate receptors (NMDAr) has gathered much of the experimental interest. NMDAr activation is regulated by many mechanisms. Among is the mandatory binding of a co-agonist, such as the amino acid d-serine, in order to activate NMDAr. This mini-review presents the most recent information indicating how d-serine could contribute to mechanisms of physiological cognitive aging and also considers the divergent views relative of the role of the NMDAr co-agonist in Alzheimer's disease.
Collapse
Affiliation(s)
- E Ploux
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France.
| | - T Freret
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France
| | - J-M Billard
- Normandie Univ, UNICAEN, INSERM, CYCERON, COMETE, 14000 Caen, France.
| |
Collapse
|
26
|
Siebold L, Krueger AC, Abdala JA, Figueroa JD, Bartnik-Olson B, Holshouser B, Wilson CG, Ashwal S. Cosyntropin Attenuates Neuroinflammation in a Mouse Model of Traumatic Brain Injury. Front Mol Neurosci 2020; 13:109. [PMID: 32670020 PMCID: PMC7332854 DOI: 10.3389/fnmol.2020.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/22/2020] [Indexed: 12/21/2022] Open
Abstract
Aim: Traumatic brain injury (TBI) is a leading cause of mortality/morbidity and is associated with chronic neuroinflammation. Melanocortin receptor agonists including adrenocorticotropic hormone (ACTH) ameliorate inflammation and provide a novel therapeutic approach. We examined the effect of long-acting cosyntropin (CoSyn), a synthetic ACTH analog, on the early inflammatory response and functional outcome following experimental TBI. Methods: The controlled cortical impact model was used to induce TBI in mice. Mice were assigned to injury and treatment protocols resulting in four experimental groups including sham + saline, sham + CoSyn, TBI + saline, and TBI + CoSyn. Treatment was administered subcutaneously 3 h post-injury and daily injections were given for up to 7 days post-injury. The early inflammatory response was evaluated at 3 days post-injury through the evaluation of cytokine expression (IL1β and TNFα) and immune cell response. Quantification of immune cell response included cell counts of microglia/macrophages (Iba1+ cells) and neutrophils (MPO+ cells) in the cortex and hippocampus. Behavioral testing (n = 10–14 animals/group) included open field (OF) and novel object recognition (NOR) during the first week following injury and Morris water maze (MWM) at 10–15 days post-injury. Results: Immune cell quantification showed decreased accumulation of Iba1+ cells in the perilesional cortex and CA1 region of the hippocampus for CoSyn-treated TBI animals compared to saline-treated. Reduced numbers of MPO+ cells were also found in the perilesional cortex and hippocampus in CoSyn treated TBI mice compared to their saline-treated counterparts. Furthermore, CoSyn treatment reduced IL1β expression in the cortex of TBI mice. Behavioral testing showed a treatment effect of CoSyn for NOR with CoSyn increasing the discrimination ratio in both TBI and Sham groups, indicating increased memory performance. CoSyn also decreased latency to find platform during the early training period of the MWM when comparing CoSyn to saline-treated TBI mice suggesting moderate improvements in spatial memory following CoSyn treatment. Conclusion: Reduced microglia/macrophage accumulation and neutrophil infiltration in conjunction with moderate improvements in spatial learning in our CoSyn treated TBI mice suggests a beneficial anti-inflammatory effect of CoSyn following TBI.
Collapse
Affiliation(s)
- Lorraine Siebold
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States
| | - Amy C Krueger
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Jonathan A Abdala
- The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States
| | - Johnny D Figueroa
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,Center for Health Disparities and Molecular Medicine, School of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Brenda Bartnik-Olson
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Barbara Holshouser
- Department of Radiology, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Christopher G Wilson
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, United States.,The Lawrence D. Longo MD Center for Perinatal Biology, Loma Linda University, Loma Linda, CA, United States.,Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA, United States
| | - Stephen Ashwal
- Department of Pediatrics, Loma Linda University Medical Center, Loma Linda, CA, United States
| |
Collapse
|
27
|
Repeated Galvanic Vestibular Stimulation Modified the Neuronal Potential in the Vestibular Nucleus. Neural Plast 2020; 2020:5743972. [PMID: 32565777 PMCID: PMC7273393 DOI: 10.1155/2020/5743972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/02/2020] [Indexed: 01/24/2023] Open
Abstract
Vestibular nucleus (VN) and cerebellar flocculus are known as the core candidates for the neuroplasticity of vestibular system. However, it has been still elusive how to induce the artificial neuroplasticity, especially caused by an electrical stimulation, and assess the neuronal information related with the plasticity. To understand the electrically induced neuroplasticity, the neuronal potentials in VN responding to the repeated electrical stimuli were examined. Galvanic vestibular stimulation (GVS) was applied to excite the neurons in VN, and their activities were measured by an extracellular neural recording technique. Thirty-eight neuronal responses (17 for the regular and 21 for irregular neurons) were recorded and examined the potentials before and after stimulation. Two-third of the population (63.2%, 24/38) modified the potentials under the GVS repetition before stimulation (p = 0.037), and more than half of the population (21/38, 55.3%) changed the potentials after stimulation (p = 0.209). On the other hand, the plasticity-related neuronal modulation was hardly observed in the temporal responses of the neurons. The modification of the active glutamate receptors was also investigated to see if the repeated stimulation changed the number of both types of glutamate receptors, and the results showed that AMPA and NMDA receptors decreased after the repeated stimuli by 28.32 and 16.09%, respectively, implying the modification in the neuronal amplitudes.
Collapse
|
28
|
Morriss NJ, Conley GM, Ospina SM, Meehan III WP, Qiu J, Mannix R. Automated Quantification of Immunohistochemical Staining of Large Animal Brain Tissue Using QuPath Software. Neuroscience 2020; 429:235-244. [DOI: 10.1016/j.neuroscience.2020.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
|
29
|
Yoshikawa T, Horai Y, Asaoka Y, Sakurai T, Kikuchi S, Yamaoka M, Tanaka M. Current status of pathological image analysis technology in pharmaceutical companies: a questionnaire survey of the Japan Pharmaceutical Manufacturers Association. J Toxicol Pathol 2020; 33:131-139. [PMID: 32425346 PMCID: PMC7218240 DOI: 10.1293/tox.2019-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022] Open
Abstract
The Japan Pharmaceutical Manufacturers Association (JPMA) has instituted a task force (TF) for the "development of image analysis technology for histopathological changes" as part of the collaboration for realizing cutting-edge drug development since 2016. In recent years, there has been progress in the digital pathology technology; however, few applications in nonclinical drug development studies have been observed. Therefore, TF performed a questionnaire survey to investigate the current status, needs, possibility, and development of image analysis. The subjects were 35 member companies of the JPMA. The questionnaire was set to assess the efficacy and/or safety of researchers engaged in pathological evaluations for each company. The questions focused on the experiences, implementation, and issues regarding histopathological examinations; the need for image analysis software; and future views. Valid responses were obtained from 26 companies. Most companies assumed that the beneficial aspect of image analysis is to gain objectivity and persuasiveness; however, challenges in the analysis conditions with regard to accuracy and without subjectivity persist. Additionally, there seems to be a need for image analysis software with advanced digital pathology technology, with most companies believing that, in the future, pathological evaluations will be partly performed by computers. In conclusion, in this questionnaire survey, TF extracted the current status of image analysis in nonclinical studies performed by pharmaceutical companies and collected opinions on future prospects regarding the development of image analysis software with advanced digital pathology technology.
Collapse
Affiliation(s)
- Tsuyoshi Yoshikawa
- Japan Pharmaceutical Manufacturers Association, R&D subcommittee, 2-3-22 Nihonbashi Honcho, Chuo-ku, Tokyo 103-0023, Japan.,Department of Drug Safety Research, Nonclinical Research Center, Tokushima Research Institute, Otsuka Pharmaceutical Co., Ltd., 463-10 Kagasuno, Kawauchi-cho, Tokushima-shi, Tokushima 771-0192, Japan
| | - Yasushi Horai
- Japan Pharmaceutical Manufacturers Association, R&D subcommittee, 2-3-22 Nihonbashi Honcho, Chuo-ku, Tokyo 103-0023, Japan.,Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1 Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan
| | - Yoshiji Asaoka
- Japan Pharmaceutical Manufacturers Association, R&D subcommittee, 2-3-22 Nihonbashi Honcho, Chuo-ku, Tokyo 103-0023, Japan.,Drug Research Evaluation, Research Laboratory for Development, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., 3-3-1 Futaba-cho, Toyonaka-shi, Osaka 561-0825, Japan
| | - Takanobu Sakurai
- Japan Pharmaceutical Manufacturers Association, R&D subcommittee, 2-3-22 Nihonbashi Honcho, Chuo-ku, Tokyo 103-0023, Japan
| | - Satomi Kikuchi
- Japan Pharmaceutical Manufacturers Association, R&D subcommittee, 2-3-22 Nihonbashi Honcho, Chuo-ku, Tokyo 103-0023, Japan.,DMPK and Safety Assessment, Research Center, Mochida Pharmaceutical Co., Ltd., 772 Uenohara, Jimba, Gotemba-shi, Shizuoka, 412-8524, Japan
| | - Makiko Yamaoka
- Japan Pharmaceutical Manufacturers Association, R&D subcommittee, 2-3-22 Nihonbashi Honcho, Chuo-ku, Tokyo 103-0023, Japan.,Toxicology Research Laboratory, Watarase Research Center, Discovery Research Headquarters, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Masaharu Tanaka
- Japan Pharmaceutical Manufacturers Association, R&D subcommittee, 2-3-22 Nihonbashi Honcho, Chuo-ku, Tokyo 103-0023, Japan.,Sohyaku. Innovative Research Division, Mitsubishi Tanabe Pharma Corporation, 2-26-1 Muraoka-Higashi, Fujisawa-shi, Kanagawa 251-8555, Japan.,Research & Development Department, Japan Bioindustry Association, 2-26-9 Hachobori, Chuo-ku, Tokyo 104-0032, Japan
| |
Collapse
|
30
|
Luo M, Deng M, Yu Z, Zhang Y, Xu S, Hu S, Xu H. Differential Susceptibility and Vulnerability of Brain Cells in C57BL/6 Mouse to Mitochondrial Dysfunction Induced by Short-Term Cuprizone Exposure. Front Neuroanat 2020; 14:30. [PMID: 32581731 PMCID: PMC7296101 DOI: 10.3389/fnana.2020.00030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/15/2020] [Indexed: 02/05/2023] Open
Abstract
Cuprizone (CPZ) is a chemical chelator toxic to mitochondria of cells. While inducing oligodendrocyte (OL) loss and demyelination, CPZ caused no fatal damage to the other brain cells (neurons, astrocytes, and microglia) in previous studies, suggesting differential susceptibility and vulnerability of brain cells to the CPZ intoxication. To demonstrate this interpretation, C57BL/6 mice were fed rodent chow without or with CPZ (0.2%, w/w) for 7 days. One day later, mitochondrial function of brain cells was assessed by proton magnetic resonance spectroscopy (1H-MRS) and biochemical analysis. Another batch of mice were processed to localize the CPZ-induced damage to mitochondrial DNA, label brain cells, and identify apoptotic cells. Compared to controls, CPZ-exposed mice showed significantly lower levels of N-acetyl-L-aspartate, phosphocreatine, and ATP detected by 1H-MRS, indicating mitochondrial dysfunction in brain cells. Susceptibility analysis showed an order of OLs, microglia, and astrocytes from high to low, in terms of the proportion of 8-OHdG labeled cells in each type of these cells in corpus callosum. Vulnerability analysis showed the highest proportion of caspase-3 positive cells in labeled OLs in cerebral cortex and hippocampus, where neurons showed no caspase-3 labeling, but the highest proportion of 8-OHdG labeling, indicating a lowest vulnerability but highest susceptibility to CPZ-induced mitochondrial dysfunction. Immature OLs, microglia, and astrocytes showed adaptive changes in proliferation and activation in response to CPZ-exposure. These data for the first time demonstrated the CPZ-induced mitochondria dysfunction in brain cells of living mouse and specified the differential susceptibility and vulnerability of brain cells to the CPZ intoxication.
Collapse
Affiliation(s)
- Mengyi Luo
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Maomao Deng
- Department of Forensic Medicine, Shantou University Medical College, Shantou, China
| | - Zijia Yu
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Yi Zhang
- The Mental Health Center, Shantou University Medical College, Shantou, China
| | - Shuqin Xu
- Department of Human Anatomy, Shantou University Medical College, Shantou, China
| | - Shengping Hu
- Department of Forensic Medicine, Shantou University Medical College, Shantou, China
- *Correspondence: Shengping Hu,
| | - Haiyun Xu
- The Mental Health Center, Shantou University Medical College, Shantou, China
- School of Psychiatry, Wenzhou Medical University, Wenzhou, China
- Haiyun Xu,
| |
Collapse
|
31
|
Dietert K, Nouailles G, Gutbier B, Reppe K, Berger S, Jiang X, Schauer AE, Hocke AC, Herold S, Slevogt H, Witzenrath M, Suttorp N, Gruber AD. Digital Image Analyses on Whole-Lung Slides in Mouse Models of Acute Pneumonia. Am J Respir Cell Mol Biol 2019; 58:440-448. [PMID: 29361238 DOI: 10.1165/rcmb.2017-0337ma] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Descriptive histopathology of mouse models of pneumonia is essential in assessing the outcome of infections, molecular manipulations, or therapies in the context of whole lungs. Quantitative comparisons between experimental groups, however, have been limited to laborious stereology or ill-defined scoring systems that depend on the subjectivity of a more or less experienced observer. Here, we introduce self-learning digital image analyses that allow us to transform optical information from whole mouse lung sections into statistically testable data. A pattern-recognition-based software and a nuclear count algorithm were adopted to quantify user-defined pathologies from whole slide scans of lungs infected with Streptococcus pneumoniae or influenza A virus compared with PBS-challenged lungs. The readout parameters "relative area affected" and "nuclear counts per area" are proposed as relevant criteria for the quantification of lesions from hematoxylin and eosin-stained sections, also allowing for the generation of a heat map of, for example, immune cell infiltrates with anatomical assignments across entire lung sections. Moreover, when combined with immunohistochemical labeling of marker proteins, both approaches are useful for the identification and counting of, for example, immune cell populations, as validated here by direct comparisons with flow cytometry data. The solutions can easily and flexibly be adjusted to specificities of different models or pathogens. Automated digital analyses of whole mouse lung sections may set a new standard for the user-defined, high-throughput comparative quantification of histological and immunohistochemical images. Still, our algorithms established here are only a start, and need to be tested in additional studies and other applications in the future.
Collapse
Affiliation(s)
- Kristina Dietert
- 1 Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Geraldine Nouailles
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Birgitt Gutbier
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katrin Reppe
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Sarah Berger
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Xiaohui Jiang
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anja E Schauer
- 3 Septomics Research Center, Jena University Hospital, Jena, Germany; and
| | - Andreas C Hocke
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Susanne Herold
- 4 Department of Internal Medicine II, Section for Infectious Diseases, Universities Giessen and Marburg Lung Center, Member of the German Center for Lung Research, Giessen, Germany
| | - Hortense Slevogt
- 3 Septomics Research Center, Jena University Hospital, Jena, Germany; and
| | - Martin Witzenrath
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Norbert Suttorp
- 2 Department of Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Achim D Gruber
- 1 Department of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
32
|
Abstract
Qualitative histopathology has been the gold standard for evaluation of morphological tissue changes in all organ systems, including the peripheral nervous system. However, the human eye is not sensitive enough to detect small changes in quantity or size. Peripheral nervous system toxicity can manifest as subtle changes in neuron size, neuron number, axon size, number of myelinated or unmyelinated axons, or number of nerve fibers. Detection of these changes may be beyond the sensitivity of the human eye alone, necessitating quantitative approaches in some cases. Although 2-dimensional (2D) histomorphometry can provide additional information and is more sensitive than qualitative evaluation alone, the results are not always representative of the entire tissue and assumptions about the tissue can lead to bias, or inaccuracies, in the data. Design-based stereology provides 3D estimates of number, volume, surface area, or length, and stereological principles can be applied to peripheral nervous system tissues to obtain accurate and precise estimates, such as neuron number and size, axon number, and total intraepidermal nerve fiber length. This review describes practical stereological approaches to 3 compartments of the peripheral nervous system: ganglia, peripheral nerves, and intraepidermal nerve fibers.
Collapse
|
33
|
Walters KM, Boucher M, Boucher GG, Opsahl AC, Mouton PR, Liu CN, Ritenour CR, Kawabe TT, Pryski HN, Somps CJ. No Evidence of Neurogenesis in Adult Rat Sympathetic Ganglia Following Guanethidine-Induced Neuronal Loss. Toxicol Pathol 2019; 48:228-237. [PMID: 30987556 DOI: 10.1177/0192623319843052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The potential for neurogenesis in the cranial (superior) cervical ganglia (SCG) of the sympathetic nervous system was evaluated. Eleven consecutive daily doses of guanethidine (100 mg/kg/d) were administered intraperitoneally to rats in order to destroy postganglionic sympathetic neurons in SCG. Following the last dose, animals were allowed to recover 1, 3, or 6 months. Right and left SCG from guanethidine-treated and age-matched, vehicle-treated control rats were harvested for histopathologic, morphometric, and stereologic evaluations. Both morphometric and stereologic evaluations confirmed neuron loss following guanethidine treatment. Morphometric analysis revealed a 50% to 60% lower number of tyrosine hydroxylase (TH)-positive neurons per unit area of SCG at both 3 and 6 months of recovery, compared to ganglia of age-matched controls, with no evidence of restoration of neuron density between 3 and 6 months. Reductions in TH-positive neurons following guanethidine treatment were corroborated by unbiased stereology of total hematoxylin and eosin-stained neuron numbers in SCG. Stereologic analyses revealed that total neuron counts were lower by 37% at 3 months of recovery when compared to age-matched vehicle controls, again with no obvious restoration between 3 and 6 months. Thus, no evidence was found that postganglionic neurons of the sympathetic nervous system in the adult rat have a neurogenic capacity.
Collapse
Affiliation(s)
- Karen M Walters
- Pfizer Drug Safety Research and Development, Groton, CT, USA
| | - Magalie Boucher
- Pfizer Drug Safety Research and Development, Groton, CT, USA
| | | | - Alan C Opsahl
- Pfizer Drug Safety Research and Development, Groton, CT, USA
| | - Peter R Mouton
- SRC Biosciences, Stereology Resource Center, Inc, Tampa, FL, USA
| | - Chang-Ning Liu
- Pfizer Drug Safety Research and Development, Groton, CT, USA
| | | | - Thomas T Kawabe
- Pfizer Drug Safety Research and Development, Groton, CT, USA
| | - Hayley N Pryski
- Pfizer Drug Safety Research and Development, Groton, CT, USA
| | | |
Collapse
|
34
|
Aeffner F, Zarella MD, Buchbinder N, Bui MM, Goodman MR, Hartman DJ, Lujan GM, Molani MA, Parwani AV, Lillard K, Turner OC, Vemuri VNP, Yuil-Valdes AG, Bowman D. Introduction to Digital Image Analysis in Whole-slide Imaging: A White Paper from the Digital Pathology Association. J Pathol Inform 2019; 10:9. [PMID: 30984469 PMCID: PMC6437786 DOI: 10.4103/jpi.jpi_82_18] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/11/2018] [Indexed: 12/22/2022] Open
Abstract
The advent of whole-slide imaging in digital pathology has brought about the advancement of computer-aided examination of tissue via digital image analysis. Digitized slides can now be easily annotated and analyzed via a variety of algorithms. This study reviews the fundamentals of tissue image analysis and aims to provide pathologists with basic information regarding the features, applications, and general workflow of these new tools. The review gives an overview of the basic categories of software solutions available, potential analysis strategies, technical considerations, and general algorithm readouts. Advantages and limitations of tissue image analysis are discussed, and emerging concepts, such as artificial intelligence and machine learning, are introduced. Finally, examples of how digital image analysis tools are currently being used in diagnostic laboratories, translational research, and drug development are discussed.
Collapse
Affiliation(s)
- Famke Aeffner
- Amgen Inc., Amgen Research, Comparative Biology and Safety Sciences, South San Francisco, CA, USA
| | - Mark D Zarella
- Department of Pathology and Laboratory Medicine, Drexel University, College of Medicine, Philadelphia, PA, USA
| | | | - Marilyn M Bui
- Department of Pathology, Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | - Mariam A Molani
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Anil V Parwani
- The Ohio State University Medical Center, Columbus, OH, USA
| | | | - Oliver C Turner
- Novartis, Novartis Institutes for BioMedical Research, Preclinical Safety, East Hannover, NJ, USA
| | | | - Ana G Yuil-Valdes
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | | |
Collapse
|
35
|
Cramer SD, Lee JS, Butt MT, Paulin J, Stoffregen WC. Neurologic Medical Device Overview for Pathologists. Toxicol Pathol 2019; 47:250-263. [PMID: 30599801 DOI: 10.1177/0192623318816685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Thorough morphologic evaluations of medical devices placed in or near the nervous system depend on many factors. Pathologists interpreting a neurologic device study must be familiar with the regulatory framework affecting device development, biocompatibility and safety determinants impacting nervous tissue responses, and appropriate study design, including the use of appropriate animal models, group design, device localization, euthanasia time points, tissue examination, sampling and processing, histochemistry and immunohistochemistry, and reporting. This overview contextualizes these features of neurologic medical devices for pathologists engaged in device evaluations.
Collapse
Affiliation(s)
| | | | - Mark T Butt
- 1 Tox Path Specialists, LLC, Frederick, Maryland, USA
| | | | | |
Collapse
|
36
|
Yurt KK, Kivrak EG, Altun G, Mohamed H, Ali F, Gasmalla HE, Kaplan S. A brief update on physical and optical disector applications and sectioning-staining methods in neuroscience. J Chem Neuroanat 2018; 93:16-29. [DOI: 10.1016/j.jchemneu.2018.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/25/2018] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
|
37
|
Cherif-Feildel M, Kellner K, Goux D, Elie N, Adeline B, Lelong C, Heude Berthelin C. Morphological and molecular criteria allow the identification of putative germ stem cells in a lophotrochozoan, the Pacific oyster Crassostrea gigas. Histochem Cell Biol 2018; 151:419-433. [PMID: 30318560 DOI: 10.1007/s00418-018-1740-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2018] [Indexed: 11/30/2022]
Abstract
While our knowledge of bivalve gametogenesis recently progressed, data on early stages of gametogenesis remain to be developed, especially when dealing with germinal stem cells (GSC) and their niche in these organisms. Here, we wish to develop a strategy to identify putative GSC in Pacific oyster Crassostrea gigas based on morphological criteria combined with vasa marker expression. A histological quantitative approach, based on stereology, allowed us to identify two types of early germ cells in the germinal epithelium, one presenting round nuclei and the other irregular ones. Both early germ cell types present slightly condensed chromatin in nucleus, are vasa-positive and the Oyvlg (oyster vasa-like gene) expression in these cells is recorded throughout the whole gametogenesis process. The microenvironment of an early germ cell in oyster includes an associated somatic cell presenting an immunolabeling for BMP2/4 and a close myoid cell. In agreement with the GSC characteristics in other species, we postulate that putative germ stem cells in C. gigas correspond to the early germ cell type with irregular nucleus shape; those early germ cells with a round nucleus may consist in progenitors.
Collapse
Affiliation(s)
- Maëva Cherif-Feildel
- Normandy University, Caen, France.,Université de Caen Normandie, Unité mixte de recherche Biologie des Organismes et Ecosystèmes Aquatiques MNHN, Sorbonne Université, UCN, CNRS-7208, IRD-207, UA, Caen, France
| | - Kristell Kellner
- Normandy University, Caen, France.,Université de Caen Normandie, Unité mixte de recherche Biologie des Organismes et Ecosystèmes Aquatiques MNHN, Sorbonne Université, UCN, CNRS-7208, IRD-207, UA, Caen, France
| | - Didier Goux
- Normandy University, Caen, France.,Université de Caen Normandie, UNICAEN, SF 4206 ICORE, CMABIO3, 14000, Caen, France
| | - Nicolas Elie
- Normandy University, Caen, France.,Université de Caen Normandie, UNICAEN, SF 4206 ICORE, CMABIO3, 14000, Caen, France
| | - Béatrice Adeline
- Normandy University, Caen, France.,Université de Caen Normandie, Unité mixte de recherche Biologie des Organismes et Ecosystèmes Aquatiques MNHN, Sorbonne Université, UCN, CNRS-7208, IRD-207, UA, Caen, France
| | - Christophe Lelong
- Normandy University, Caen, France.,Université de Caen Normandie, Unité mixte de recherche Biologie des Organismes et Ecosystèmes Aquatiques MNHN, Sorbonne Université, UCN, CNRS-7208, IRD-207, UA, Caen, France
| | - Clothilde Heude Berthelin
- Normandy University, Caen, France. .,Université de Caen Normandie, Unité mixte de recherche Biologie des Organismes et Ecosystèmes Aquatiques MNHN, Sorbonne Université, UCN, CNRS-7208, IRD-207, UA, Caen, France.
| |
Collapse
|
38
|
Saravanan C, Schumacher V, Brown D, Dunstan R, Galarneau JR, Odin M, Mishra S. Meeting Report: Tissue-based Image Analysis. Toxicol Pathol 2018; 45:983-1003. [PMID: 29162012 DOI: 10.1177/0192623317737468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Quantitative image analysis (IA) is a rapidly evolving area of digital pathology. Although not a new concept, the quantification of histological features on photomicrographs used to be cumbersome, resource-intensive, and limited to specialists and specialized laboratories. Recent technological advances like highly efficient automated whole slide digitizer (scanner) systems, innovative IA platforms, and the emergence of pathologist-friendly image annotation and analysis systems mean that quantification of features on histological digital images will become increasingly prominent in pathologists' daily professional lives. The added value of quantitative IA in pathology includes confirmation of equivocal findings noted by a pathologist, increasing the sensitivity of feature detection, quantification of signal intensity, and improving efficiency. There is no denying that quantitative IA is part of the future of pathology; however, there are also several potential pitfalls when trying to estimate volumetric features from limited 2-dimensional sections. This continuing education session on quantitative IA offered a broad overview of the field; a hands-on toxicologic pathologist experience with IA principles, tools, and workflows; a discussion on how to apply basic stereology principles in order to minimize bias in IA; and finally, a reflection on the future of IA in the toxicologic pathology field.
Collapse
Affiliation(s)
- Chandra Saravanan
- 1 Translational Medicine: Preclinical Safety, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Vanessa Schumacher
- 2 Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | - Danielle Brown
- 3 Charles River Laboratories, Inc., Durham, North Carolina, USA
| | | | - Jean-Rene Galarneau
- 1 Translational Medicine: Preclinical Safety, Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA
| | - Marielle Odin
- 2 Roche Pharmaceutical Research and Early Development (pRED), Roche Innovation Center Basel, Basel, Switzerland
| | | |
Collapse
|