1
|
Li Z, Wang J, Wang Z, Xu Y. Towards an optimal model for gastric cancer peritoneal metastasis: current challenges and future directions. EBioMedicine 2023; 92:104601. [PMID: 37182268 DOI: 10.1016/j.ebiom.2023.104601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/08/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
Peritoneal metastasis is a challenging aspect of clinical practice for gastric cancer. Animal models are crucial in understanding molecular mechanisms, assessing drug efficacy, and conducting clinical intervention studies, including those related to gastric cancer peritoneal metastasis. Unlike other xenograft models, peritoneal metastasis models should not only present tumor growth at the transplant site, but also recapitulate tumor cell metastasis in the abdominal cavity. Developing a reliable model of gastric cancer peritoneal metastasis involves several technical aspects, such as the selection of model animals, source of xenograft tumors, technology of transplantation, and dynamic monitoring of the tumor progression. To date, challenges remain in developing a reliable model that can completely recapitulate peritoneal metastasis. Thus, this review aims to summarize the techniques and strategies used to establish animal models of gastric cancer peritoneal metastasis, providing a reference for future model establishment.
Collapse
Affiliation(s)
- Zehui Li
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, PR China
| | - Jin Wang
- Department of E.N.T., Shengjing Hospital of China Medical University, Shenyang, 110003, PR China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, PR China.
| | - Yan Xu
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, 110001, PR China.
| |
Collapse
|
2
|
Development of an Antibody Delivery Method for Cancer Treatment by Combining Ultrasound with Therapeutic Antibody-Modified Nanobubbles Using Fc-Binding Polypeptide. Pharmaceutics 2022; 15:pharmaceutics15010130. [PMID: 36678759 PMCID: PMC9861716 DOI: 10.3390/pharmaceutics15010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/17/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
A key challenge in treating solid tumors is that the tumor microenvironment often inhibits the penetration of therapeutic antibodies into the tumor, leading to reduced therapeutic efficiency. It has been reported that the combination of ultrasound-responsive micro/nanobubble and therapeutic ultrasound (TUS) enhances the tissue permeability and increases the efficiency of delivery of macromolecular drugs to target tissues. In this study, to facilitate efficient therapeutic antibody delivery to tumors using this combination system, we developed therapeutic antibody-modified nanobubble (NBs) using an Fc-binding polypeptide that can quickly load antibodies to nanocarriers; since the polypeptide was derived from Protein G. TUS exposure to this Herceptin®-modified NBs (Her-NBs) was followed by evaluation of the antibody's own ADCC activity, resulting the retained activity. Moreover, the utility of combining therapeutic antibody-modified NBs and TUS exposure as an antibody delivery system for cancer therapy was assessed in vivo. The Her-NBs + TUS group had a higher inhibitory effect than the Herceptin and Her-NBs groups. Overall, these results suggest that the combination of therapeutic antibody-modified NBs and TUS exposure can enable efficient antibody drug delivery to tumors, while retaining the original antibody activity. Hence, this system has the potential to maximize the therapeutic effects in antibody therapy for solid cancers.
Collapse
|
3
|
Napoli GC, Figg WD, Chau CH. Functional Drug Screening in the Era of Precision Medicine. Front Med (Lausanne) 2022; 9:912641. [PMID: 35879922 PMCID: PMC9307928 DOI: 10.3389/fmed.2022.912641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
The focus of precision medicine is providing the right treatment to each unique patient. This scientific movement has incited monumental advances in oncology including the approval of effective, targeted agnostic therapies. Yet, precision oncology has focused largely on genomics in the treatment decision making process, and several recent clinical trials demonstrate that genomics is not the only variable to be considered. Drug screening in three dimensional (3D) models, including patient derived organoids, organs on a chip, xenografts, and 3D-bioprinted models provide a functional medicine perspective and necessary complement to genomic testing. In this review, we discuss the practicality of various 3D drug screening models and each model's ability to capture the patient's tumor microenvironment. We highlight the potential for enhancing precision medicine that personalized functional drug testing holds in combination with genomic testing and emerging mathematical models.
Collapse
Affiliation(s)
| | | | - Cindy H. Chau
- Molecular Pharmacology Section, Genitourinary Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
4
|
Dunne M, Regenold M, Allen C. Hyperthermia can alter tumor physiology and improve chemo- and radio-therapy efficacy. Adv Drug Deliv Rev 2020; 163-164:98-124. [PMID: 32681862 DOI: 10.1016/j.addr.2020.07.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/20/2022]
Abstract
Hyperthermia has demonstrated clinical success in improving the efficacy of both chemo- and radio-therapy in solid tumors. Pre-clinical and clinical research studies have demonstrated that targeted hyperthermia can increase tumor blood flow and increase the perfused fraction of the tumor in a temperature and time dependent manner. Changes in tumor blood circulation can produce significant physiological changes including enhanced vascular permeability, increased oxygenation, decreased interstitial fluid pressure, and reestablishment of normal physiological pH conditions. These alterations in tumor physiology can positively impact both small molecule and nanomedicine chemotherapy accumulation and distribution within the tumor, as well as the fraction of the tumor susceptible to radiation therapy. Hyperthermia can trigger drug release from thermosensitive formulations and further improve the accumulation, distribution, and efficacy of chemotherapy.
Collapse
|
5
|
Nishizawa T, Nakano K, Fujii E, Komura D, Kuroiwa Y, Ishimaru C, Monnai M, Aburatani H, Ishikawa S, Suzuki M. In vivo effects of mutant RHOA on tumor formation in an orthotopic inoculation model. Oncol Rep 2019; 42:1745-1754. [PMID: 31485674 PMCID: PMC6775816 DOI: 10.3892/or.2019.7300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022] Open
Abstract
Ras homolog family member A (RHOA) mutations are driver genes in diffuse‑type gastric cancers (DGCs), and we previously revealed that RHOA mutations contribute to cancer cell survival and cell migration through their dominant negative effect on Rho‑associated kinase (ROCK) signaling in vitro. However, how RHOA mutations contribute to DGC development in vivo is poorly understood. In the present study, the contribution of RHOA mutations to tumor morphology was investigated using an orthotopic xenograft model using the gastric cancer cell line MKN74, in which wild‑type (WT) or mutated (Y42C and Y42S) RHOA had been introduced. When we conducted RNA sequencing to distinguish between the genes expressed in human tumor tissues from those in mouse stroma, the expression profiles of the tumors were clearly divided into a Y42C/Y42S group and a mock/WT group. Through gene set enrichment analysis, it was revealed that inflammation‑ and hypoxia‑related pathways were enriched in the mock/WT tumors; however, cell metabolism‑ and cell cycle‑related pathways such as Myc, E2F, oxidative phosphorylation and G2M checkpoint were enriched in the Y42C/Y42S tumors. In addition, the gene set related to ROCK signaling inhibition was enriched in the RHOA‑mutated group, which indicated that a series of events are related to ROCK inhibition induced by RHOA mutations. Histopathological analysis revealed that small tumor nests were more frequent in RHOA mutants than in the mock or WT group. In addition, increased blood vessel formation and infiltration of macrophages within the tumor mass were observed in the RHOA mutants. Furthermore, unlike mock/WT, the RHOA‑mutated tumor cells had little antitumor host reaction in the invasive front, which is similar to the pattern of mucosal invasion in clinical RHOA‑mutated DGC. These transcriptome and pathological analyses revealed that mutated RHOA functionally contributes to the acquisition of DGC features, which will accelerate our understanding of the contribution of RHOA mutations in DGC biology and the development of further therapeutic strategies.
Collapse
Affiliation(s)
- Takashi Nishizawa
- Department of Research, Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, Tokyo 153‑8904, Japan
| | - Kiyotaka Nakano
- Department of Research, Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, Tokyo 153‑8904, Japan
| | - Etsuko Fujii
- Department of Research, Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, Tokyo 153‑8904, Japan
| | - Daisuke Komura
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Yoshie Kuroiwa
- Chugai Research Institute for Medical Science Co., Ltd., Kamakura, Kanagawa 247‑8530, Japan
| | - Chisako Ishimaru
- Chugai Research Institute for Medical Science Co., Ltd., Kamakura, Kanagawa 247‑8530, Japan
| | - Makoto Monnai
- Chugai Research Institute for Medical Science Co., Ltd., Kamakura, Kanagawa 247‑8530, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo 153‑8904, Japan
| | - Shumpei Ishikawa
- Department of Genomic Pathology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113‑8510, Japan
| | - Masami Suzuki
- Department of Research, Forerunner Pharma Research Co., Ltd., Komaba Open Laboratory, The University of Tokyo, Tokyo 153‑8904, Japan
| |
Collapse
|