1
|
Sato K, Fukui H, Hagiwara Y, Ogawa R, Nishioka A, Numano T, Sugiyama T, Kawabe M, Mera Y, Yoneda T. Difference in carcinogenicities of two different vapor grown carbon fibers with different physicochemical characteristics induced by intratracheal instillation in rats. Part Fibre Toxicol 2023; 20:37. [PMID: 37770972 PMCID: PMC10537556 DOI: 10.1186/s12989-023-00547-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
BACKGROUND Carbon fibers are high aspect ratio structures with diameters on the submicron scale. Vapor grown carbon fibers are contained within multi-walled carbon tubes, with VGCF™-H commonly applied as a conductive additive in lithium-ion batteries. However, several multi-walled carbon fibers, including MWNT-7, have been reported to induce lung carcinogenicity in rats. This study investigated the carcinogenic potential of VGCF™-H fibers in F344 rats of both sexes with the vapor grown carbon fibers VGCF™-H and MWNT-7 over 2 years. The carbon fibers were administered to rats by intratracheal instillation at doses of 0, 0.016, 0.08, and 0.4 mg/kg (total doses of 0, 0.128, 0.64, and 3.2 mg/kg) once per week for eight weeks and the rats were observed for up to 2 years after the first instillation. RESULTS Histopathological examination showed the induction of malignant mesothelioma on the pleural cavity with dose-dependent increases observed at 0, 0.128, 0.64, and 3.2 mg/kg in rats of both sexes that were exposed to MWNT-7. On the other hand, only two cases of pleural malignant mesothelioma were observed in the VGCF™-H groups; both rats that received 3.2 mg/kg in male. The animals in the MWNT-7 groups either died or became moribund earlier than those in the VGCF™-H groups, which is thought related to the development of malignant mesothelioma. The survival rates were higher in the VGCF™-H group, and more carbon fibers were observed in the pleural lavage fluid (PLF) of the MWNT-7 groups. These results suggest that malignant mesothelioma is related to the transfer of carbon fibers into the pleural cavity. CONCLUSIONS The intratracheal instillation of MWNT-7 clearly led to carcinogenicity in both male and female rats at all doses. The equivocal evidence for carcinogenic potential that was observed in male rats exposed to VGCF™-H was not seen in the females. The differences in the carcinogenicities of the two types of carbon fibers are thought due to differences in the number of carbon fibers reaching the pleural cavity. The results indicate that the carcinogenic activity of VGCF™-H is lower than that of MWNT-7.
Collapse
Affiliation(s)
- Kei Sato
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan.
| | - Hiroko Fukui
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan
| | - Yuji Hagiwara
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan
| | - Ryoji Ogawa
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan
| | - Ayako Nishioka
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan
| | - Takamasa Numano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi, 491-0113, Japan
| | - Taiki Sugiyama
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi, 491-0113, Japan
| | - Mayumi Kawabe
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi, 491-0113, Japan
| | - Yukinori Mera
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya-shi, Aichi, 491-0113, Japan
| | - Tadashi Yoneda
- Chemical Management Department, Resonac Corporation, Tokyo Shiodome Bldg.,1-9-1, Higashi-Shimbashi, Minato-ku, Tokyo, 105-7325, Japan
| |
Collapse
|
2
|
Luo X, Xie D, Su J, Hu J. Inflammatory Genes Associated with Pristine Multi-Walled Carbon Nanotubes-Induced Toxicity in Ocular Cells. Int J Nanomedicine 2023; 18:2465-2484. [PMID: 37192896 PMCID: PMC10183194 DOI: 10.2147/ijn.s394694] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/06/2023] [Indexed: 05/18/2023] Open
Abstract
Background The wide application of multi-walled carbon nanotubes (MWCNTs) in various fields has raised enormous concerns regarding their safety for humans. However, studies on the toxicity of MWCNTs to the eye are rare and potential molecular mechanisms are completely lacking. This study was to evaluate the adverse effects and toxic mechanisms of MWCNTs on human ocular cells. Methods Human retinal pigment epithelial cells (ARPE-19) were treated with pristine MWCNTs (7-11 nm) (0, 25, 50, 100 or 200 μg/mL) for 24 hours. MWCNTs uptake into ARPE-19 cells was examined using transmission electron microscopy (TEM). The cytotoxicity was evaluated by CCK-8 assay. The death cells were detected by Annexin V-FITC/PI assay. RNA profiles in MWCNT-exposed and non-exposed cells (n = 3) were analyzed using RNA-sequencing. The differentially expressed genes (DEGs) were identified through the DESeq2 method and hub of which were filtered by weighted gene co-expression, protein-protein interaction (PPI) and lncRNA-mRNA co-expression network analyses. The mRNA and protein expression levels of crucial genes were verified using quantitative polymerase chain reaction (qPCR), colorimetric analysis, ELISA and Western blotting. The toxicity and mechanisms of MWCNTs were also validated in human corneal epithelial cells (HCE-T). Results TEM analysis indicated the internalization of MWCNTs into ARPE-19 cells to cause cell damage. Compared with untreated ARPE-19 cells, those exposed to MWCNTs exhibited significantly decreased cell viabilities in a dose-dependent manner. The percentages of apoptotic (early, Annexin V positive; late, Annexin V and PI positive) and necrotic (PI positive) cells were significantly increased after exposure to IC50 concentration (100 μg/mL). A total of 703 genes were identified as DEGs; 254 and 56 of them were, respectively, included in darkorange2 and brown1 modules that were significantly associated with MWCNT exposure. Inflammation-related genes (including CXCL8, MMP1, CASP3, FOS, CXCL2 and IL11) were screened as hub genes by calculating the topological characteristics of genes in the PPI network. Two dysregulated long non-coding RNAs (LUCAT1 and SCAT8) were shown to regulate these inflammation-related genes in the co-expression network. The mRNA levels of all eight genes were confirmed to be upregulated, while caspase-3 activity and the release of CXCL8, MMP1, CXCL2, IL11 and FOS proteins were demonstrated to be increased in MWCNT-treated ARPE-19 cells. MWCNTs exposure also can induce cytotoxicity and increase the caspase-3 activity and the expression of LUCAT1, MMP1, CXCL2, and IL11 mRNA and protein in HCE-T cells. Conclusion Our study provides promising biomarkers for monitoring MWCNT-induced eye disorders and targets for developing preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Xiaogang Luo
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
- Correspondence: Xiaogang Luo; Jianchen Hu, Tel +86-0512-67162531, Email ;
| | - Dongli Xie
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
| | - Jing Su
- Shanghai Institute of Spacecraft Equipment, Shanghai, 200240, People’s Republic of China
| | - Jianchen Hu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, People’s Republic of China
| |
Collapse
|
3
|
Assessment of Pristine Carbon Nanotubes Toxicity in Rodent Models. Int J Mol Sci 2022; 23:ijms232315343. [PMID: 36499665 PMCID: PMC9739793 DOI: 10.3390/ijms232315343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Carbon nanotubes are increasingly used in nanomedicine and material chemistry research, mostly because of their small size over a large surface area. Due to their properties, they are very attractive candidates for use in medicine and as drug carriers, contrast agents, biological platforms, and so forth. Carbon nanotubes (CNTs) may affect many organs, directly or indirectly, so there is a need for toxic effects evaluation. The main mechanisms of toxicity include oxidative stress, inflammation, the ability to damage DNA and cell membrane, as well as necrosis and apoptosis. The research concerning CNTs focuses on different animal models, functionalization, ways of administration, concentrations, times of exposure, and a variety of properties, which have a significant effect on toxicity. The impact of pristine CNTs on toxicity in rodent models is being increasingly studied. However, it is immensely difficult to compare obtained results since there are no standardized tests. This review summarizes the toxicity issues of pristine CNTs in rodent models, as they are often the preferred model for human disease studies, in different organ systems, while considering the various factors that affect them. Regardless, the results showed that the majority of toxicological studies using rodent models revealed some toxic effects. Even with different properties, carbon nanotubes were able to generate inflammation, fibrosis, or biochemical changes in different organs. The problem is that there are only a small amount of long-term toxicity studies, which makes it impossible to obtain a good understanding of later effects. This article will give a greater overview of the situation on toxicity in many organs. It will allow researchers to look at the toxicity of carbon nanotubes in a broader context and help to identify studies that are missing to properly assess toxicity.
Collapse
|
4
|
Fujita K, Obara S, Maru J. Pulmonary toxicity, cytotoxicity, and genotoxicity of submicron-diameter carbon fibers with different diameters and lengths. Toxicology 2021; 466:153063. [PMID: 34890706 DOI: 10.1016/j.tox.2021.153063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022]
Abstract
Submicron-diameter carbon fibers (SCFs) are a type of fine-diameter fibrous carbon material that can be used in various applications. To accelerate their practical application, a hazard assessment of SCFs must be undertaken. This study demonstrated the pulmonary toxicity, cytotoxicity, and genotoxicity of three types of SCFs with different diameters and lengths. The average diameter and length of SCFs were 259.2 nm and 11.7 μm in SCF1 suspensions, 248.5 nm and 6.7 μm in SCF2 suspensions, and 183.0 nm and 13.7 μm in SCF3 suspensions, respectively. The results of pulmonary inflammation and recovery following intratracheal instillation with SCFs at doses of 0.25, 0.5, or 1.0 mg/kg showed that the pulmonary toxicity of SCFs was SCF3 > SCF1 > SCF2. These results suggest that SCF diameter and length are most likely important contributing factors associated with lung SCF clearance, pulmonary inflammation, and recovery. Furthermore, SCFs are less pulmonary toxic than bent multi-walled carbon nanotubes. Cell viability, pro-inflammatory cytokine and intracellular reactive oxygen species productions, morphological changes, gene expression profiling in NR8383 rat alveolar macrophage cells showed that the cytotoxic potency of SCFs is: SCF3 > SCF1 > SCF2. These results showed that SCFs with small diameters had high cytotoxicity, and SCFs with short lengths had low cytotoxicity. We conclude that pulmonary toxicity and cytotoxicity are associated with the diameter and length distributions of SCFs. In addition, a standard battery for genotoxicity testing, namely the Ames test, an in vitro chromosomal aberration test, and a mammalian erythrocyte micronucleus test, demonstrated that the three types of SCFs did not induce genotoxicity. Our findings provide new evidence for evaluating the potential toxicity of not only SCFs used in this study but also various SCFs which differ depending on the manufacturing processes or physicochemical properties.
Collapse
Affiliation(s)
- Katsuhide Fujita
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan.
| | - Sawae Obara
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| | - Junko Maru
- Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8569, Japan
| |
Collapse
|
5
|
Takeuchi K, Kuroda Y, Numano T, Kimura M, Hayashi S, Furukawa S. Comparison of acute inhalation toxicity of sulfuric acid by the inhalation and intratracheal instillation methods. J Toxicol Pathol 2021; 34:269-273. [PMID: 34290483 PMCID: PMC8280304 DOI: 10.1293/tox.2020-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/25/2021] [Indexed: 11/19/2022] Open
Abstract
Recently, intratracheal instillation has been focused on as a simple, low-cost alternative to the inhalation method. In this study, intratracheal instillation of sulfuric acid, a typical acidic compound, was performed to compare the acute toxicity of acidic compounds that could cause damage to the respiratory system between intratracheal instillation and inhalation. Sulfuric acid was administered to male rats at doses of 0.7, 2, 7, 20, and 60 mg/kg by dividing the total dose into four doses. General condition and body weight were examined up to 14 days after administration, and macropathological and histopathological examinations were performed. The half-lethal dose was then estimated. All animals administered 20 and 60 mg/kg sulfuric acid and one animal administered 2 mg/kg sulfuric acid died within 4 h after administration. No abnormalities were observed in other animals. At 20 and 60 mg/kg, multiple red foci or diffuse red areas were macroscopically observed in the lungs. In these lesions, histopathologically, clefts between the mucosal epithelium and basement membrane and necrosis of the alveolar epithelium were observed. Deaths in these groups may have resulted from lung injury. No notable changes were observed in other animals. Therefore, the half-lethal dose of sulfuric acid by intratracheal instillation was estimated as 7-20 mg/kg. The acute toxicity by intratracheal instillation was evaluated with two-fold sensitivity since the exposure at the half-lethal sulfuric acid concentration in inhalation studies was calculated as 43.2 mg/kg.
Collapse
Affiliation(s)
- Kazuya Takeuchi
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Yusuke Kuroda
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Takamasa Numano
- DIMS Institute of Medical Science, Inc., 64 Goura, Nishiazai, Azai-cho, Ichinomiya, Aichi 491-0113, Japan
| | - Masayuki Kimura
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Seigo Hayashi
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| | - Satoshi Furukawa
- Biological Research Laboratories, Nissan Chemical Corporation, 1470 Shiraoka, Shiraoka-shi, Saitama 349-0294, Japan
| |
Collapse
|