1
|
Tian X, Gao Z, Xie Y, Lu X, Zhao Y, Yao P, Dong M, Yu L, Wu N. Interrelationship between altered metabolites and the gut microbiota in people living with HIV with different immune responses to antiretroviral therapy. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100340. [PMID: 39897701 PMCID: PMC11783423 DOI: 10.1016/j.crmicr.2025.100340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Background Antiretroviral therapy (ART) effectively reduces opportunistic infections and mortality in people living with HIV (PLWH); however, some patients exhibit poor immune recovery. This study explores the connections among immune responses, metabolites, and the gut microbiota in PLWH with differing reactions to ART. Methods We analyzed the gut microbiota composition, metabolites, and immune markers in 38 PLWH who showed an immunological response (IR) and 32 who did not (INR), as classified according to CD4+ T-cell levels after 24 months of ART. Additionally, in vitro assays using cell counting kit 8, flow cytometry, and quantitative real-time reverse transcription PCR were employed to assess the effects of the metabolites on cell viability, immune marker expression, and cytokine levels. Results Gut microbiota and metabolic profiles differed significantly between the IR and INR groups. Enterococcus was more abundant in the INR group, whereas [Ruminococcus]_gnavus_group levels were reduced. Significant metabolic pathway alterations included decreased folate biosynthesis and biotin metabolism. We observed negative associations of Parabacteroides with activation markers on CD4+ T-cells, and positive correlations with CD4/CD8 ratios. Enterococcus showed inverse relationships with these markers. Indole-3-acetyl-beta-1-D-glucoside (area under the curve value = 0.8931), had the best discriminatory ability. Further experiments showed that Indole-3-acetyl-beta-1-D-glucoside significantly decreased the proportions of CD4+CD57+, effector CD4+, CD4+PD1+, CD8+CD57+, effector CD8+, and CD8+HLA-DR+ T cells. Moreover, mRNA expression analysis showed that Indole-3-acetyl-beta-1-D-glucoside treatment led to a suppression of pro-inflammatory cytokines. Conclusion The multi-omics approach highlighted potential biomarkers for immune recovery in HIV, suggesting avenues for further research into treatment strategies.
Collapse
Affiliation(s)
- Xuebin Tian
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhongyao Gao
- College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yiwen Xie
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiangyun Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yulong Zhao
- Shandong First Medical University, Jinan, Shandong, China
| | - Peng Yao
- Department of Infectious Disease, Zhejiang Qingchun Hospital, Hangzhou, Zhejiang, China
| | - Mingqing Dong
- Department of Infectious Disease, Zhejiang Qingchun Hospital, Hangzhou, Zhejiang, China
| | - Lifeng Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong medicine and Health Key Laboratory of Emergency Medicine, Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, Shandong, China
| | - Nanping Wu
- Cell Biology Research Platform, Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Aida M, Yamada R, Matsuo T, Taniguchi I, Nakamura SI, Tsukahara T. Dietary Weizmannia coagulans Strain SANK70258 Ameliorates Coccidial Symptoms and Improves Intestinal Barrier Functions of Broilers by Modulating the Intestinal Immunity and the Gut Microbiota. Pathogens 2023; 12:96. [PMID: 36678444 PMCID: PMC9864622 DOI: 10.3390/pathogens12010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/09/2023] Open
Abstract
To determine the mechanisms by which Weizmannia coagulans SANK70258 (WC) supplementation improved growth performance and coccidial symptoms, we assessed the gene expressions and the microbiota compositions in the small intestinal tissues and digestas of coccidium-infected broilers previously given WC or lasalocid-A sodium (AM). WC supplementation significantly upregulated the gene expressions related to intestinal immunity and barrier functions, such as IL17A, IL17F, IL10, cathelicidin-2 and pIgR. Body weights, and Claudin-1 and IL10 expressions were positively correlated (r = 0.41, p < 0.05 and r = 0.37, p = 0.06, respectively), whereas lesion scores of the small intestine and IL17A expression were negatively correlated (r = −0.33, p = 0.09). The microbiota analysis detected that genus Alistipes was more abundant in WC-supplemented broilers than in control, and positively correlated with body weights and Claudin-1 expression (r = 0.61, p < 0.05 and r = 0.51, p < 0.05, respectively). Intriguingly, genus Enterococcus was most abundant in WC-supplemented broilers and positively correlated with IL17A expression (r = 0.49, p < 0.05). Interestingly, Escherichia-Shigella was significantly more abundant in the small intestinal digestas of AM-administered broilers than in those of control. To summarize, WC supplementation modulated and immunostimulated the microbiotas of broilers, specifically genera Alistipes and Enterococcus, which led to the improvement of weight gain and coccidial symptoms, without disrupting the intestinal microbiota compositions, as AM did.
Collapse
Affiliation(s)
- Masanori Aida
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama 227-8502, Kanagawa, Japan
| | - Ryouichi Yamada
- Science & Innovation Center, Mitsubishi Chemical Corporation, Yokohama 227-8502, Kanagawa, Japan
| | | | | | - Shin-ichi Nakamura
- Kyoto Institute of Nutrition & Pathology, Ujitawara 610-0231, Kyoto, Japan
| | | |
Collapse
|
3
|
Kotake K, Kumazawa T, Nakamura K, Shimizu Y, Ayabe T, Adachi T. Ingestion of miso regulates immunological robustness in mice. PLoS One 2022; 17:e0261680. [PMID: 35061718 PMCID: PMC8782471 DOI: 10.1371/journal.pone.0261680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/07/2021] [Indexed: 01/04/2023] Open
Abstract
In Japan, there is a long history of consumption of miso, a fermented soybean paste, which possesses beneficial effects on human health. However, the mechanism behind these effects is not fully understood. To clarify the effects of miso on immune cells, we evaluated its immunomodulatory activity in mice. Miso did not alter the percentage of B and T cells in the spleen; however, it increased CD69+ B cells, germinal center B cells and regulatory T cells. Anti-DNA immunoglobulin M antibodies, which prevent autoimmune disease, were increased following ingestion of miso. Transcriptome analysis of mouse spleen cells cultured with miso and its raw material revealed that the expression of genes, including interleukin (IL)-10, IL-22 and CD86, was upregulated. Furthermore, intravital imaging of the small intestinal epithelium using a calcium biosensor mouse line indicated that miso induced Ca2+ signaling in a manner similar to that of probiotics. Thus, ingestion of miso strengthened the immune response and tolerance in mice. These results appear to account, at least in part, to the salubrious effects of miso.
Collapse
Affiliation(s)
- Kunihiko Kotake
- Ichibiki Co., Ltd., Nagoya, Japan
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Toshihiko Kumazawa
- Ichibiki Co., Ltd., Nagoya, Japan
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kiminori Nakamura
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Yu Shimizu
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Tokiyoshi Ayabe
- Faculty of Advanced Life Science, Department of Cell Biological Science, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | - Takahiro Adachi
- Department of Precision Health, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|