1
|
Basak S, Mallick R, Navya Sree B, Duttaroy AK. Placental Epigenome Impacts Fetal Development: Effects of Maternal Nutrients and Gut Microbiota. Nutrients 2024; 16:1860. [PMID: 38931215 PMCID: PMC11206482 DOI: 10.3390/nu16121860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Evidence is emerging on the role of maternal diet, gut microbiota, and other lifestyle factors in establishing lifelong health and disease, which are determined by transgenerationally inherited epigenetic modifications. Understanding epigenetic mechanisms may help identify novel biomarkers for gestation-related exposure, burden, or disease risk. Such biomarkers are essential for developing tools for the early detection of risk factors and exposure levels. It is necessary to establish an exposure threshold due to nutrient deficiencies or other environmental factors that can result in clinically relevant epigenetic alterations that modulate disease risks in the fetus. This narrative review summarizes the latest updates on the roles of maternal nutrients (n-3 fatty acids, polyphenols, vitamins) and gut microbiota on the placental epigenome and its impacts on fetal brain development. This review unravels the potential roles of the functional epigenome for targeted intervention to ensure optimal fetal brain development and its performance in later life.
Collapse
Affiliation(s)
- Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Boga Navya Sree
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India; (S.B.); (B.N.S.)
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway
| |
Collapse
|
2
|
Peng LH, Tan Y, Bajinka O. The influence of maternal diet on offspring's gut microbiota in early life. Arch Gynecol Obstet 2024; 309:1183-1190. [PMID: 38057588 DOI: 10.1007/s00404-023-07305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/12/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND The influence of maternal diet on offspring's health is an area of study that is linked to epigenetics. Maternal diet contributes to determining the health status of offspring and maternally linked mechanisms and is a global health challenge that requires attention. The impact of gut microbiota on host metabolism and offspring health is still not established. OBJECTIVE In this review, we intend to discuss the evidence on the impact of maternal diet and the health of offspring gut microbiota. The paper focuses on the gut microbiome of animal models. It captures the maternal diet and its influence on the offspring's gut microbiota, behavior that is supported by cell experimental results. Both inflammation and immune status of offspring induced by maternal diet are discussed. Finally, this review used predicted biological pathways involved in maternal diet and offspring health, and the influence of maternal diet on gut microbiota and offspring behavior. Obesity, diabetes, asthma and allergies, and neurodegenerative disorders and prospects for maternal diet, and microbiota and offspring health were discussed. CONCLUSION The review was able to gather that a high-fat diet during pregnancy created a long-lasting metabolic signature on the infant's innate immune system, altering inflammation in the offspring microbiota, which predisposed offspring to obesity and metabolic diseases in adulthood.
Collapse
Affiliation(s)
- Li-Hua Peng
- Department of Physiology, Hunan Yongzhou Vocational Technical College, Yongzhou, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
- China-Africa Research Centre of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410078, Hunan, China.
- School of Medicine and Allied Health Sciences, University of The Gambia, Serrekunda, Gambia.
| |
Collapse
|
3
|
Koren O, Konnikova L, Brodin P, Mysorekar IU, Collado MC. The maternal gut microbiome in pregnancy: implications for the developing immune system. Nat Rev Gastroenterol Hepatol 2024; 21:35-45. [PMID: 38097774 DOI: 10.1038/s41575-023-00864-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/04/2024]
Abstract
The gut microbiome has important roles in host metabolism and immunity, and microbial dysbiosis affects human physiology and health. Maternal immunity and microbial metabolites during pregnancy, microbial transfer during birth, and transfer of immune factors, microorganisms and metabolites via breastfeeding provide critical sources of early-life microbial and immune training, with important consequences for human health. Only a few studies have directly examined the interactions between the gut microbiome and the immune system during pregnancy, and the subsequent effect on offspring development. In this Review, we aim to describe how the maternal microbiome shapes overall pregnancy-associated maternal, fetal and early neonatal immune systems, focusing on the existing evidence and highlighting current gaps to promote further research.
Collapse
Affiliation(s)
- Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Liza Konnikova
- Department of Paediatrics and Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT, USA
| | - Petter Brodin
- Department of Immunology and Inflammation, Imperial College London, London, UK
- Department of Women's and Children's Health, Karolinska Institutet, Solna, Sweden
| | - Indira U Mysorekar
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-National Research Council (IATA-CSIC), Valencia, Spain.
| |
Collapse
|
4
|
Miyake K, Horiuchi S, Shinohara R, Kushima M, Otawa S, Yui H, Akiyama Y, Ooka T, Kojima R, Yokomichi H, Mochizuki K, Yamagata Z. Maternal dietary fiber intake during pregnancy and child development: the Japan Environment and Children's Study. Front Nutr 2023; 10:1203669. [PMID: 37575329 PMCID: PMC10415901 DOI: 10.3389/fnut.2023.1203669] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 08/15/2023] Open
Abstract
Background Animal studies have shown that maternal low-fiber diets during pregnancy may impair brain development and function in offspring, but this has not been validated by epidemiological studies. The aim of this study was to investigate the link between maternal dietary fiber intake during pregnancy and neurodevelopmental delay in offspring using a large birth cohort. Methods A total of 76,207 mother-infant pairs were analyzed using data from the Japan Environment and Children's Study, a nationwide prospective cohort study. Maternal dietary fiber intake was estimated using the food frequency questionnaire in mid-pregnancy. Maternal dietary fiber intake was adjusted for energy and classified into quintiles. Developmental delay was assessed in five domains using the Japanese version of the Ages and Stages Questionnaire, Third Edition at the age of 3 years. The logistic regression analysis was performed to estimate the odds ratio (OR) and 95% confidence interval (CI) for the link between dietary fiber intake during pregnancy and developmental delay at the age of 3 years. Results The lowest intake group of total dietary fiber had a higher risk of delayed communication [adjusted OR (aOR), 1.51; 95% CI, 1.32-1.74], fine motor (aOR, 1.45; 95% CI, 1.32-1.61), problem-solving (aOR, 1.46; 95% CI, 1.32-1.61), and personal-social skills (aOR, 1.30; 95% CI, 1.12-1.50) than did the highest intake group. An analysis that excluded the effects of insufficient folic acid intake during pregnancy also showed a similar trend. Conclusion This study showed that maternal dietary fiber deficiency during pregnancy might influence an increased risk of neurodevelopmental delay in offspring.
Collapse
Affiliation(s)
- Kunio Miyake
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Sayaka Horiuchi
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Japan
| | - Ryoji Shinohara
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Japan
| | - Megumi Kushima
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Japan
| | - Sanae Otawa
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Japan
| | - Hideki Yui
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Yuka Akiyama
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Tadao Ooka
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Reiji Kojima
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Hiroshi Yokomichi
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
| | - Kazuki Mochizuki
- Department of Local Produce and Food Sciences, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Chuo, Japan
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Japan
| |
Collapse
|
5
|
Nakajima A, Shibuya T, Sasaki T, Lu YJ, Ishikawa D, Haga K, Takahashi M, Kaga N, Osada T, Sato N, Nagahara A. Nicotine Oral Administration Attenuates DSS-Induced Colitis Through Upregulation of Indole in the Distal Colon and Rectum in Mice. Front Med (Lausanne) 2021; 8:789037. [PMID: 34966763 PMCID: PMC8710606 DOI: 10.3389/fmed.2021.789037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/17/2021] [Indexed: 11/25/2022] Open
Abstract
Nicotine affects the gastrointestinal environment and modulates ulcerative colitis (UC). However, the associations among nicotine, gut metabolites, and UC are still largely unknown. We investigated whether orally administered nicotine affected gut metabolites and dextran sodium sulfate (DSS)-induced colitis. C57BL/6 male mice were orally administered nicotine solution in drinking water prior to inducing DSS-induced colitis. Short-chain fatty acids (SCFAs) and indole in gut contents and fecal samples were measured by GC-MS and hydroxylamine-based indole assays, respectively. Oral administration of nicotine increased indole concentration in feces, but, in contrast, SCFA values did not differ with nicotine administration. Indole levels were increased in the distal colon and rectum but not in the cecum and proximal colon. DSS-induced colitis was less severe clinically and histological changes were minimal in the rectum of orally nicotine-administered mice compared to mice drinking only water. 16S rRNA microbiome on the feces revealed an increasing in Clostridium and Porphyromonas in nicotine-administered mice. In conclusion, nicotine administration was associated with increased indole levels in the distal colon and rectum and attenuated DSS-induced colitis. Oral administration of nicotine may play a potential role in indole upregulation and prevention of UC.
Collapse
Affiliation(s)
- Akihito Nakajima
- Department of Gastroenterology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Tomoyoshi Shibuya
- Department of Gastroenterology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Takashi Sasaki
- Animal Research Center, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yu Jie Lu
- Center of Excellence for Infection Control Science, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Dai Ishikawa
- Department of Gastroenterology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Keiichi Haga
- Department of Gastroenterology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Masahito Takahashi
- Department of Gastroenterology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Naoko Kaga
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Taro Osada
- Department of Gastroenterology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Nobuhiro Sato
- Department of Gastroenterology, Juntendo University, School of Medicine, Tokyo, Japan
| | - Akihito Nagahara
- Department of Gastroenterology, Juntendo University, School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Wen X, Xiaoyue D, Longkun D, Yue X, Man Y, Min Z, Liang W, Chengxue Y, Huaxi X. Three main short-chain fatty acids inhibit the activation of THP-1 cells by Mycoplasma pneumoniae. Biosci Biotechnol Biochem 2021; 85:923-930. [PMID: 33590852 DOI: 10.1093/bbb/zbaa110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022]
Abstract
The overactivation of macrophages causes chronic inflammatory diseases. Short-chain fatty acids (SCFAs), potential drugs for clinical treatment, are modulators of macrophage inflammatory reaction. Therefore, the modulation of macrophage-mediated cell activity is expected to become a new therapeutic strategy for inflammatory diseases caused by Mycoplasma pneumoniae. In this study, 2 kinds of SCFAs (propionate and butyrate) were found to have anti-inflammatory effects in M. pneumoniae-stimulated THP-1 cells inflammatory. They inhibited the expressions of IL-4, IL-6, ROS, and NLRP3 inflammasome, while enhancing the expressions of IL-10 and IFN-γ. Our study revealed these 2 agents to repress transcriptional activities of NF-κB, which are important modulators of inflammation. Meanwhile, SCFAs can significantly enhance the autophagy induced by M. pneumoniae. Considering that SCFAs have few side effects, they might be the promising adjuvant therapy for the prevention and/or treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Xia Wen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Dai Xiaoyue
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Ding Longkun
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xi Yue
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yan Man
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhang Min
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wu Liang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yi Chengxue
- School of Medical Technology, Zhenjiang College, Zhenjiang, China
| | - Xu Huaxi
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Evidence for maternal diet-mediated effects on the offspring microbiome and immunity: implications for public health initiatives. Pediatr Res 2021; 89:301-306. [PMID: 32919391 PMCID: PMC7897208 DOI: 10.1038/s41390-020-01121-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/26/2020] [Indexed: 12/25/2022]
Abstract
Diets rich in saturated fats have become a staple globally. Fifty percent of women of childbearing age in the United States are obese or overweight, with diet being a significant contributor. There is increasing evidence of the impact of maternal high-fat diet on the offspring microbiome. Alterations of the neonatal microbiome have been shown to be associated with multiple morbidities, including the development of necrotizing enterocolitis, atopy, asthma, metabolic dysfunction, and hypertension among others. This review provides an overview of the recent studies and mechanisms being examined on how maternal diet can alter the immune response and microbiome in offspring and the implications for directed public health initiatives for women of childbearing age. IMPACT: Maternal diet is important in shaping the offspring microbiome and neonatal immune system. Reviews the current literature in the field and suggests potential mechanisms and areas of research to be targeted. Highlights the current scope of our knowledge of ideal nutrition during pregnancy and consideration for enhanced public health initiatives to promote well-being of the future generation.
Collapse
|
8
|
A Soluble Fiber Diet Increases Bacteroides fragilis Group Abundance and Immunoglobulin A Production in the Gut. Appl Environ Microbiol 2020; 86:AEM.00405-20. [PMID: 32332136 DOI: 10.1128/aem.00405-20] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022] Open
Abstract
Immunoglobulin A (IgA) is essential for defense of the intestinal mucosa against harmful pathogens. Previous studies have shown that Bacteroidetes, the major phylum of gut microbiota together with Firmicutes, impact IgA production. However, the relative abundances of species of Bacteroidetes responsible for IgA production were not well understood. In the present study, we identified some specific Bacteroidetes species that were associated with gut IgA induction by hsp60-based profiling of species distribution among Bacteroidetes The levels of IgA and the expression of the gene encoding activation-induced cytidine deaminase (AID) in the large intestine lamina propria, which is crucial for class switch recombination from IgM to IgA, were increased in soluble high-fiber diet (sHFD)-fed mice. We found that Bacteroides acidifaciens was the most abundant Bacteroidetes species in both sHFD- and normal diet-fed mice. In addition, the gut IgA levels were associated with the relative abundance of Bacteroides fragilis group species such as Bacteroides faecis, Bacteroides caccae, and Bacteroides acidifaciens Conversely, the ratio of B. acidifaciens to other Bacteroidetes species was reduced in insoluble high-fiber diet fed- and no-fiber diet-fed mice. To investigate whether B. acidifaciens increases IgA production, we generated B. acidifaciens monoassociated mice and found increased gut IgA production and AID expression. Collectively, soluble dietary fiber increases the ratio of gut Bacteroides fragilis group, such as B. acidifaciens, and IgA production. This might improve gut immune function, thereby protecting against bowel pathogens and reducing the incidence of inflammatory bowel diseases.IMPORTANCE Immunoglobulin A (IgA) is essential for defense of the intestinal mucosa against harmful pathogens. Gut microbiota impact IgA production, but the specific species responsible for IgA production remain largely elusive. Previous studies have shown that IgA and Bacteroidetes, the major phyla of gut microbiota, were increased in soluble high-fiber diet-fed mice. We show here that the levels of IgA in the gut and the expression of activation-induced cytidine deaminase (AID) in the large intestine lamina propria, which is crucial for class switch recombination from IgM to IgA, were correlated with the abundance of Bacteroides fragilis group species such as Bacteroides faecis, Bacteroides caccae, and Bacteroides acidifaciens B. acidifaciens monoassociated mice increased gut IgA production and AID expression. Soluble dietary fiber may improve gut immune function, thereby protecting against bowel pathogens and reducing inflammatory bowel diseases.
Collapse
|