1
|
Sakakibara M, Sumida H, Yanagida K, Miyasato S, Nakamura M, Sato S. Bitter taste receptor T2R38 is expressed on skin-infiltrating lymphocytes and regulates lymphocyte migration. Sci Rep 2022; 12:11790. [PMID: 35821061 PMCID: PMC9276799 DOI: 10.1038/s41598-022-15999-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/04/2022] [Indexed: 12/23/2022] Open
Abstract
Bitter taste receptors (T2Rs) are G protein-coupled receptors involved in the perception of bitter taste on the tongue. In humans, T2Rs have been found in several sites outside the oral cavity. Although T2R38 has been reported to be expressed on peripheral lymphocytes, it is poorly understood whether T2R38 plays immunological roles in inflammatory skin diseases such as atopic dermatitis (AD). Then, we first confirmed that T2R38 gene expression was higher in lesional skin of AD subjects than healthy controls. Furthermore, skin T2R38 expression levels were correlated with serum thymus and activation-regulated chemokine and IgE levels in AD patients. In lesional skin of AD, section staining revealed that CD3+ T cells in the dermis were T2R38 positive. In addition, flow cytometry analysis showed T2R38 expression in skin T cells. Migration assays using T2R38-transduced Jurkat T cell leukemia cells revealed that T2R38 agonists exerted a dose-dependent migration inhibitory effect. Moreover, skin tissue extracts, as well as supernatants of cultured HaCaT keratinocytes, caused T2R38-dependent migration inhibition, indicating that there should be an endogenous ligand for T2R38 in the skin epidermis. These findings implicate T2R38 as a migratory inhibitory receptor on the skin-infiltrating lymphocytes and as a therapeutic target for allergic/inflammatory skin diseases.
Collapse
Affiliation(s)
- Moe Sakakibara
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hayakazu Sumida
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Keisuke Yanagida
- Department of Lipid Signaling, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo, Japan
| | - Sosuke Miyasato
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Motonao Nakamura
- Department of Bioscience, Graduate School of Life Science, Okayama University of Science, Okayama, Japan
| | - Shinichi Sato
- Department of Dermatology, Faculty of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
2
|
Kozieł MJ, Ziaja M, Piastowska-Ciesielska AW. Intestinal Barrier, Claudins and Mycotoxins. Toxins (Basel) 2021; 13:758. [PMID: 34822542 PMCID: PMC8622050 DOI: 10.3390/toxins13110758] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/08/2023] Open
Abstract
The intestinal barrier is the main barrier against all of the substances that enter the body. Proper functioning of this barrier guarantees maintained balance in the organism. Mycotoxins are toxic, secondary fungi metabolites, that have a negative impact both on human and animal health. It was postulated that various mycotoxins may affect homeostasis by disturbing the intestinal barrier. Claudins are proteins that are involved in creating tight junctions between epithelial cells. A growing body of evidence underlines their role in molecular response to mycotoxin-induced cytotoxicity. This review summarizes the information connected with claudins, their association with an intestinal barrier, physiological conditions in general, and with gastrointestinal cancers. Moreover, this review also includes information about the changes in claudin expression upon exposition to various mycotoxins.
Collapse
|