Wang X, Liu L, Luo Y, Zhao H. Bioconjugation of biotin to the interfaces of polymeric micelles via in situ click chemistry.
LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009;
25:744-750. [PMID:
19105785 DOI:
10.1021/la802810w]
[Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Azido-containing amphiphilic triblock copolymer poly(ethylene glycol)-b-poly(azidoethyl methacrylate)-b-poly(methyl methacrylate) (PEG-b-PAzEMA-b-PMMA) was prepared by postpolymerization functionalization of poly(ethylene glycol)-b-poly(hydroxyethyl methacrylate)-b-poly(methyl methacrylate) (PEG-b-PHEMA-b-PMMA). In aqueous media, PEG-b-PAzEMA-b-PMMA self-assembled into spherical micelles with the azide groups at the hydrophobic/hydrophilic interface due to the molecular architecture. Biotin was conjugated to the micelles by in situ click chemistry between azide groups and alkynated biotin, resulting in the formation of a functional interface between the hydrophilic shell and the hydrophobic core. The bioavailability of biotin to avidin was demonstrated by an avidin/4'-hydroxyazobenzene-2-carboxylic acid (avidin/HABA) assay, transmission electron microscopy, and dynamic light scattering investigations.
Collapse