1
|
Fulati A, Uto K, Iwanaga M, Watanabe M, Ebara M. Smart Shape-Memory Polymeric String for the Contraction of Blood Vessels in Fetal Surgery of Sacrococcygeal Teratoma. Adv Healthc Mater 2022; 11:e2200050. [PMID: 35385611 DOI: 10.1002/adhm.202200050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Indexed: 12/19/2022]
Abstract
Shape-memory polymers (SMPs) are promising materials in numerous emerging biomedical applications owing to their unique shape-memory characteristics. However, simultaneous realization of high strength, toughness, stretchability while maintaining high shape fixity (Rf ) and shape recovery ratio (Rr ) remains a challenge that hinders their practical applications. Herein, a novel shape-memory polymeric string (SMP string) that is ultra-stretchable (up to 1570%), strong (up to 345 MPa), tough (up to 237.9 MJ m-3 ), and highly recoverable (Rf averagely above 99.5%, Rr averagely above 99.1%) through a facile approach fabricated solely by tetra-branched poly(ε-caprolactone) (PCL) is reported. Notably, the shape-memory contraction force (up to 7.97 N) of this SMP string is customizable with the manipulation of their energy storage capacity by adjusting the string thickness and stretchability. In addition, this SMP string displays a controllable shape-memory response time and demonstrates excellent shape-memory-induced contraction effect against both rigid silicone tubes and porcine carotids. This novel SMP string is envisioned to be applied in the contraction of blood vessels and resolves the difficulties in the restriction of blood flow in minimally invasive surgeries such as fetoscopic surgery of sacrococcygeal teratoma (SCT).
Collapse
Affiliation(s)
- Ailifeire Fulati
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
- Graduate School of Science and Technology University of Tsukuba Tsukuba 3058577 Japan
| | - Koichiro Uto
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
| | - Masanobu Iwanaga
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
| | - Miho Watanabe
- Department of Pediatric Surgery Graduate School of Medicine Osaka University Osaka 5650871 Japan
| | - Mitsuhiro Ebara
- Research Center for Functional Materials National Institute for Materials Science Tsukuba 3050044 Japan
- Graduate School of Science and Technology University of Tsukuba Tsukuba 3058577 Japan
- Graduate School of Advanced Engineering Tokyo University of Science Tokyo 1258585 Japan
| |
Collapse
|
2
|
Synthesis, characterization & cytocompatibility of poly (diol-co-tricarballylate) based thermally crosslinked elastomers for drug delivery & tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 93:254-264. [PMID: 30274057 DOI: 10.1016/j.msec.2018.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/20/2018] [Accepted: 07/11/2018] [Indexed: 11/24/2022]
Abstract
The aim of this study was to investigate the synthesis and in vitro characterization of thermoset biodegradable poly (diol-co-tricarballylate) (PDT) elastomeric polymers for the purpose of their use in implantable drug delivery and tissue engineering applications. The synthesis was based on thermal crosslinking technique via a polycondensation reaction of tricarballylic acid with aliphatic diols of varying chain lengths (C6-C12). PDT prepolymers were synthesized at 140 °C for 20 min. After purification, the prepolymers were molded and kept at 120 °C for 18 h under vacuum to complete the crosslinking process. PDT prepolymers were characterized by DSC, FT-IR, 1H NMR and GPC. The PDT elastomers were also subjected to thermal and structural analysis, as well as sol content, mechanical testing, in vitro degradation and cytocompatibility studies. The mechanical properties and sol content were found to be dependent on synthesis conditions and can be controlled by manipulating the crosslinking density and number of methylene groups in the chain of precursor aliphatic diol. The family of thermally crosslinked PDT biodegradable polyesters were successfully prepared and characterized; besides they have promising use in drug delivery and other biomedical tissue engineering applications.
Collapse
|
3
|
Shimomura S, Matsuno H, Kinoshita Y, Fujimura S, Tanaka K. Cellular behaviors on polymeric scaffolds with 2D-patterned mechanical properties. Polym J 2018. [DOI: 10.1038/s41428-018-0043-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
4
|
Uto K, Mano SS, Aoyagi T, Ebara M. Substrate Fluidity Regulates Cell Adhesion and Morphology on Poly(ε-caprolactone)-Based Materials. ACS Biomater Sci Eng 2016; 2:446-453. [DOI: 10.1021/acsbiomaterials.6b00058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Koichiro Uto
- Biomaterials
Unit, International
Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Sharmy S. Mano
- Biomaterials
Unit, International
Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takao Aoyagi
- Biomaterials
Unit, International
Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Mitsuhiro Ebara
- Biomaterials
Unit, International
Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
5
|
Uto K, Muroya T, Okamoto M, Tanaka H, Murase T, Ebara M, Aoyagi T. Design of super-elastic biodegradable scaffolds with longitudinally oriented microchannels and optimization of the channel size for Schwann cell migration. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2012; 13:064207. [PMID: 27877534 PMCID: PMC5099767 DOI: 10.1088/1468-6996/13/6/064207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 10/03/2012] [Indexed: 06/04/2023]
Abstract
We newly designed super-elastic biodegradable scaffolds with longitudinally oriented microchannels for repair and regeneration of peripheral nerve defects. Four-armed poly(ε-caprolactone-co-D,L-lactide)s (P(CL-co-DLLA)s) were synthesized by ring-opening copolymerization of CL and DLLA from terminal hydroxyl groups of pentaerythritol, and acryloyl chloride was then reacted with the ends of the chains. The end-functionalized P(CL-co-DLLA) was crosslinked in a cylindrical mold in the presence of longitudinally oriented silica fibers as the templates, which were later dissolved by hydrofluoric acid. The elastic moduli of the crosslinked P(CL-co-DLLA)s were controlled between 10-1 and 102 MPa at 37 °C, depending on the composition. The scaffolds could be elongated to 700% of their original size without fracture or damage ('super-elasticity'). Scanning electron microscopy images revealed that well-defined and highly aligned multiple channels consistent with the mold design were produced in the scaffolds. Owing to their elastic nature, the microchannels in the scaffolds did not collapse when they were bent to 90°. To evaluate the effect of the channel diameter on Schwann cell migration, microchannels were also fabricated in transparent poly(dimethylsiloxane), allowing observation of cell migration. The migration speed increased with channel size, but the Young's modulus of the scaffold decreased as the channel diameter increased. These findings may serve as the basis for designing tissue-engineering scaffolds for nerve regeneration and investigating the effects of the geometrical and dimensional properties on axonal outgrowth.
Collapse
Affiliation(s)
- Koichiro Uto
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takanari Muroya
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Michio Okamoto
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Hiroyuki Tanaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Tsuyoshi Murase
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, 565-0871, Japan
| | - Mitsuhiro Ebara
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takao Aoyagi
- Biomaterials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Department of Materials Engineering, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
6
|
Ebara M, Uto K, Idota N, Hoffman JM, Aoyagi T. Shape-memory surface with dynamically tunable nano-geometry activated by body heat. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2012; 24:273-8. [PMID: 21954058 DOI: 10.1002/adma.201102181] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/05/2011] [Indexed: 05/23/2023]
Abstract
Shape-memory surfaces with on-demand, tunable nanopatterns are developed to observe time dependent changes in cell alignment using temperature-responsive poly(ϵ-caprolactone) (PCL) films. Temporary grooved nanopatterns are easily programmed on the films and triggered to transition quickly to permanent surface patterns by the application of body heat. A time-dependent cytoskeleton remodeling is also observed under biologically relevant conditions.
Collapse
Affiliation(s)
- Mitsuhiro Ebara
- Biomaterials Unit, International Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
7
|
Degradation of cross-linked aliphatic polyester composed of poly(ɛ-caprolactone-co-d,l-lactide) depending on the thermal properties. Polym Degrad Stab 2009. [DOI: 10.1016/j.polymdegradstab.2008.12.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|