1
|
Whitney AJ, Lindeque Z, Kruger R, Steyn SF. Running from depression: the antidepressant-like potential of prenatal and pre-pubertal exercise in adolescent FSL rats exposed to an early-life stressor. Acta Neuropsychiatr 2023:1-15. [PMID: 37969008 DOI: 10.1017/neu.2023.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
OBJECTIVE We aimed to answer the questions of whether early-life (perinatal and/or juvenile) exercise can induce antidepressant-like effects in a validated rodent model of depression, and whether such early-life intervention could prevent or reverse the adverse effects of early-life stress in their offspring. METHODS Male and female Flinders sensitive line rats born to a dam that exercised during gestation, or not, were either maternally separated between PND02 and 16 and weaned on PND17 or not. Half of these animals then underwent a fourteen-day low-intensity exercise regimen from PND22. Baseline depressive-like behaviour was assessed on PND21 and then reassessed on PND36, whereafter hippocampal monoamine levels, redox state markers and metabolic markers relevant to mitochondrial function were measured. RESULTS Pre-pubertal exercise was identified as the largest contributing factor to the observed effects, where it decreased immobility time in the FST by 6%, increased time spent in the open arms of the EPM by 9%. Hippocampal serotonin and norepinephrine levels were also increased by 35% and 26%, respectively, whilst nicotinic acid was significantly decreased. CONCLUSION These findings suggest that pre-pubertal low-intensity exercise induces beneficial biological alterations that could translate into antidepressant behaviour in genetically susceptible individuals.
Collapse
Affiliation(s)
- Ashleigh J Whitney
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| | - Zander Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Ruan Kruger
- Hypertension in African Research Team (HART), North-West University, Potchefstroom, South Africa
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Stephan F Steyn
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Ebrahimnejad M, Azizi P, Alipour V, Zarrindast MR, Vaseghi S. Complicated Role of Exercise in Modulating Memory: A Discussion of the Mechanisms Involved. Neurochem Res 2022; 47:1477-1490. [PMID: 35195832 DOI: 10.1007/s11064-022-03552-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/15/2022]
Abstract
Evidence has shown the beneficial effects of exercise on learning and memory. However, many studies have reported controversial results, indicating that exercise can impair learning and memory. In this article, we aimed to review basic studies reporting inconsistent complicated effects of exercise on memory in rodents. Also, we discussed the mechanisms involved in the effects of exercise on memory processes. In addition, we tried to find scientific answers to justify the inconsistent results. In this article, the role of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (involved in synaptic plasticity and neurogenesis), and vascular endothelial growth factor, nerve growth factor, insulin-like growth factor 1, inflammatory markers, apoptotic factors, and antioxidant system was discussed in the modulation of exercise effects on memory. The role of intensity and duration of exercise, and type of memory task was also investigated. We also mentioned to the interaction of exercise with the function of neurotransmitter systems, which complicates the prediction of exercise effect via altering the level of BDNF. Eventually, we suggested that changes in the function of neurotransmitter systems following different types of exercise (depending on exercise intensity or age of onset) should be investigated in further studies. It seems that exercise-induced changes in the function of neurotransmitter systems may have a stronger role than age, type of memory task, or exercise intensity in modulating memory. Importantly, high levels of interactions between neurotransmitter systems and BDNF play a critical role in the modulation of exercise effects on memory performance.
Collapse
Affiliation(s)
- Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Paniz Azizi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Vahide Alipour
- Department of Physical Education and Sport Sciences, Faculty of Humanities, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O. Box: 1419815477, Karaj, Iran.
| |
Collapse
|
3
|
Tarmizi NAKA, Kushairi N, Phan CW, Sabaratnam V, Naidu M, David P. β-Glucan-Rich Extract of Gray Oyster Mushroom, Pleurotus pulmonarius, Improves Object Recognition Memory and Hippocampus Morphology in Mice Fed a High-Fat Diet. J Med Food 2022; 25:230-238. [PMID: 35085010 DOI: 10.1089/jmf.2021.k.0121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obesity may cause behavioral alterations, while maternal obesity can contribute to metabolic disorders in subsequent generations. The effect of β-glucan-rich Pleurotus pulmonarius (βgPp) was investigated on mouse neurobehavior and hippocampus and its offspring's hippocampus development. Female ICR mice were fed with normal diet (ND), ND with βgPp, high-fat diet (HFD), or HFD with βgPp for 3 months followed by behavioral test and mating. Immunohistochemistry for the expression of neuronal nuclear protein (NeuN) and ionized calcium binding adaptor molecule-1 (Iba-1) in the hippocampus was carried out. βgPp significantly enhanced short-term object recognition memory in HFD-fed mice. βgPp also ameliorated the histological alterations and neuronal loss and increased Iba-1-positive microglia in the hippocampus regions of HFD-fed mice and their male offspring. These findings demonstrated that βgPp supplementation attenuated the effects of HFD on object recognition memory and the alterations on the hippocampal regions of maternal mice and their male offspring.
Collapse
Affiliation(s)
- Nor Athirah Kamaliah Ahmad Tarmizi
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Naufal Kushairi
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chia Wei Phan
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia.,Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Vikineswary Sabaratnam
- Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Murali Naidu
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Pamela David
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia.,Mushroom Research Centre, Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Resistance Exercise Improves Spatial Learning Ability Through Phosphorylation of 5'-Adenosine Monophosphate-Activated Protein Kinase in Parkinson Disease Mice. Int Neurourol J 2021; 25:S55-62. [PMID: 34844387 PMCID: PMC8654314 DOI: 10.5213/inj.2142336.168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Purpose Exercise is a representative noninvasive treatment that can be applied to various diseases. We studied the effect of resistance exercise on motor function and spatial learning ability in Parkinson disease (PD) mice. Methods The rotarod test and beam walking test were conducted to evaluate the effect of resistance exercise on motor function, and the Morris water maze test was conducted to examine the effect of resistance exercise on spatial learning ability. The effect of resistance exercise on brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) expression and 5’-adenosine monophosphate-activated protein kinase (AMPK) phosphorylation was investigated by Western blot analysis. New cell generation was confirmed by immunohistochemistry for 5-bromo-2’-deoxyuridine. Results Resistance exercise improved coordination, balance, and spatial learning ability in PD mice. Resistance exercise enhanced new cell production, BDNF and TrkB expression, and AMPK phosphorylation in PD mice. The effect of such resistance exercise was similar to that of levodopa application. Conclusions In PD-induced mice, resistance exercise enhanced AMPK phosphorylation to increase BDNF expression and new neuron generation, thereby improving spatial learning ability. Resistance exercise is believed to help improve symptoms of PD.
Collapse
|
5
|
Maternal Swimming Exercise During Pregnancy Improves Memory Through Enhancing Neurogenesis and Suppressing Apoptosis via Wnt/β-Catenin Pathway in Autistic Mice. Int Neurourol J 2021; 25:S63-71. [PMID: 34844388 PMCID: PMC8654312 DOI: 10.5213/inj.2142338.169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/21/2021] [Indexed: 11/08/2022] Open
Abstract
Purpose Wnt pathway is closely related to neurodevelopmental process associated with cognitive function. After administration of valproic acid to the pregnant mice, the effect of swimming exercise of pregnant mice on the memory, neuronal production, and apoptosis of pups was studied in relation with Wnt/β-catenin signaling pathway. Methods On day 12 of pregnancy, mice were injected subcutaneously with 400-mg/kg valproic acid. The pregnant mice in the control with swimming exercise group and in the valproic acid injection with swimming exercise group were allowed for swimming for 30 minutes one time per a day, repeated 5 days per a week, during 3 weeks. Step-through avoidance task and Morris water maze task for memory function, immunohistochemistry for 5-bromo-2’-deoxyuridine (BrdU)-positive cells and western blot for brain-derived neurotrophic factor (BDNF), Wnt, β-catenin, Bcl-2 related X protein (Bax), B-cell lymphoma 2 (Bcl-2), cleaved caspase-3 were carried out. Results Maternal swimming exercise during pregnancy improved memory function, increased BDNF expression, and neuronal proliferation in the valproic acid injected pups. Maternal swimming exercise during pregnancy suppressed Wnt expression and phosphorylation of β-catenin in the valproic acid injected pups. Maternal swimming exercise inhibited Bax and cleaved caspase-3 expression and increased Bcl-2 expression in the valproic acid injected pups. Conclusions Maternal swimming exercise during pregnancy improved memory function by increasing cell proliferation and inhibiting apoptosis through Wnt/β-catenin signaling cascade activation in the valproic acid injected pups. Maternal swimming exercise during pregnancy may have a protective effect on factors that induce autism in the fetus.
Collapse
|
6
|
Kim SH, Ko IG, Jin JJ, Hwang L, Kim BK, Baek SS. Study on the pathogenesis of liver injury caused by alcohol and drugs. J Exerc Rehabil 2021; 17:319-323. [PMID: 34805020 PMCID: PMC8566101 DOI: 10.12965/jer.2142530.265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 09/10/2021] [Indexed: 11/22/2022] Open
Abstract
In the present study, alcohol, lipopolysaccharide (LPS), and carbon tetrachloride (CCL4) were administered to experimental mice. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 concentrations, and collagen type 1alpha (COL-1A) and fibronectin expressions were measured to evaluate pathophysiology of liver injury. Levels of ALT and AST were significantly increased by alcohol treatment. Alcohol with LPS treatment increased ALT and AST levels more than alcohol alone treatment, but it was not statistically significant. Alcohol with CCL4 treatment significantly increased ALT and AST levels more than alcohol alone treatment. Alcohol with LPS and CCL4 treatment significantly increased ALT and AST levels more than alcohol with CCL4 treatment. Concentrations of TNF-α, IL-1β, and IL-6 were significantly enhanced by alcohol treatment. Alcohol with LPS treatment significantly enhanced concentrations of TNF-α, IL-1β, and IL-6 more than alcohol alone treatment. Alcohol with CCL4 treatment significantly enhanced TNF-α, IL-1β, and IL-6 concentrations more than alcohol alone treatment. Alcohol with LPS and CCL4 treatment increased TNF-α, IL-1β, and IL-6 concentrations more than alcohol with CCL4 treatment, but it was not statistically significant. COL-1A and fibronectin expressions were significantly increased by alcohol treatment. Alcohol with LPS treatment significantly increased COL-1A and fibronectin expressions more than alcohol alone treatment. Alcohol with CCL4 treatment significantly increased COL-1A and fibronectin expressions more than alcohol alone treatment. Alcohol with LPS and CCL4 treatment increased COL-1A and fibronectin expressions more than alcohol with CCL4 treatment, but it was not statistically significant.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Department of Sport & Health Sciences, College of Art & Culture, Sangmyung University, Seoul, Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Il-Gyu Ko
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Jun-Jang Jin
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Lakkyong Hwang
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Bo-Kyun Kim
- Department of Emergency Technology, College of Health Science, Gachon University, Incheon, Korea
| | - Seung-Soo Baek
- Department of Sport & Health Sciences, College of Art & Culture, Sangmyung University, Seoul, Korea
| |
Collapse
|
7
|
Ko YJ. Treadmill exercise alleviates short-term memory impairments of pups born to old and obese mother rats. J Exerc Rehabil 2021; 17:153-157. [PMID: 34285891 PMCID: PMC8257433 DOI: 10.12965/jer.2142300.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 11/22/2022] Open
Abstract
Obesity causes atrophy of the brain, leading to deterioration in working memory, learning, and cognitive function. The status of short-term memory in rat pups born to older obese mother rats was verified, and the effect of treadmill exercise on short-term memory in rat pups was investigated. Step-down avoidance test for short-term memory, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining for apoptosis, and immunohistochemistry for Ki67 for new cell generation were done. The old female rats were fed with normal diet (5% of fat), and the old and obese female rats were fed with high-fat diet (60% of fat) for up to 50 weeks in age (for 44 weeks in experimental period). The newborn rats were divided into four groups according to the conditions of the mother rats as follows: the rat pups group born to old rats, the rat pups group born to old rats with exercise, the rat pups group born to old and obese rats, the rat pups group born to old and obese rats with exercise. Maternal exercise improved short-term memory, decreased TUNEL-positive cell number, and increased Ki67-positive cell number of the pups born to old and obese rats. Maternal exercise has been found to contribute to eliminating the health risks of fetuses born to old obese mothers.
Collapse
Affiliation(s)
- Young Jun Ko
- Major in Sport Service Practice, College of Welfare Convergence, Kangnam University, Yongin, Korea
| |
Collapse
|
8
|
Voluntary Wheel Running Exercise Improves Aging-Induced Sarcopenia via Activation of Peroxisome Proliferator-Activated Receptor Gamma Coactivator-1α/Fibronectin Type III Domain-Containing Protein 5/Adenosine Monophosphate-Activated Protein Kinase Signaling Pathway. Int Neurourol J 2021; 25:S27-34. [PMID: 34053208 PMCID: PMC8171240 DOI: 10.5213/inj.2142170.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/1979] [Accepted: 04/24/2021] [Indexed: 12/19/2022] Open
Abstract
Purpose In this study, the protective effect of voluntary wheel running exercise on muscle loss and muscle weakness in gastrocnemius of old rats was investigated. The association of voluntary wheel exercise with the peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)/fibronectin type III domain-containing protein 5 (FNDC5)/adenosine monophosphate- activated protein kinase (AMPK) signaling pathway and vascular endothelial growth factor (VEGF) expression was also evaluated. Methods Six-month-old and 22-month-old male rats were used for this experiment. The rats in voluntary wheel running exercise groups were performed wheel running for 2 months. Weight bearing test for walking strength, rotarod test for motor coordination and balance, hematoxylin and eosin (H&E) staining for histological changes in the muscle tissues, Western blot analysis for PGC-1α, FNDC5, AMPK, immunofluorescence for VEGF were conducted. Results Decreased muscle mass, strength, and coordination due to aging were associated with a decrease in the PGC-1α/FNDC5/AMPK signaling pathway in the gastrocnemius. Voluntary wheel running exercise enhanced VEGF expression by activating the PGC-1α/FNDC5/AMPK signaling pathway, then increased muscle mass, strength, and coordination. Conclusions It has been suggested that voluntary wheel running exercise alleviates symptoms of urological diseases that are difficult to treat. Wheel running exercise is a good therapeutic strategy to prevent or treat aging-related sarcopenia.
Collapse
|
9
|
Kim TW, Ko YJ, Youn KH, Hwang BG, Bang HS, Lee SJ. Treadmill exercise improves spatial learning ability by increasing cell proliferation in offspring born to maternal rats receiving stress during pregnancy. J Exerc Rehabil 2021; 17:88-95. [PMID: 34012934 PMCID: PMC8103186 DOI: 10.12965/jer.2142196.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
Prenatal stress causes learning deficits by inhibiting neurogenesis in the hippocampus. We studied the effects of maternal treadmill running or offspring treadmill running on the spatial learning ability of adolescent offspring rats or adult offspring rats born to maternal rats that received stress during pregnancy. For this study, spatial learning ability was measured by radial 8-arm maze task. Immunohistochemistry for 5-bromo-2′-deoxyuridine and Western blot for brain-derived neurotrophic factor (BDNF), tyrosine kinase B (TrkB), Bcl-2-associated X protein (Bax), and B-cell lymphoma 2 (Bcl-2) were also conducted. Stress was induced by exposing pregnant rats to hound in an enclosed room. Maternal treadmill running or treadmill running of offspring improved spatial learning ability of adolescent and adult offspring rats born to maternal rats receiving stress during pregnancy. Maternal treadmill running or treadmill running of offspring increased hippocampal cell proliferation of adolescent and adult offspring rats born to maternal rats receiving stress during pregnancy. Maternal treadmill running or treadmill running of offspring increased BDNF and TrkB expression in the hippocampus of adolescent and adult offspring rats born to maternal rats receiving stress during pregnancy. Maternal treadmill running or treadmill running of offspring inhibited Bax expression and increased Bcl-2 expression in the hippocampus of adolescent and adult offspring rats born to maternal rats receiving stress during pregnancy. Mother’s exercise during pregnancy or child’s exercise after childbirth can improve the spatial learning ability deteriorated due to stress during pregnancy.
Collapse
Affiliation(s)
- Tae-Woon Kim
- Department of Human Health Care, Gyeongsang National University, Jinju, Korea
| | - Young Jun Ko
- Major in Sport Service Practice, College of Welfare Convergence, Kangnam University, Yongin, Korea
| | - Ki-Hyok Youn
- Department of Social Welfare, College of Health, Welfare and Education, Tongmyong University, Busan, Korea
| | - Boo-Geun Hwang
- Department of Sport Rehabilitation, College of Health, Welfare and Education, Tongmyong University, Busan, Korea
| | - Hyun-Seok Bang
- Department of Sport Rehabilitation, College of Health, Welfare and Education, Tongmyong University, Busan, Korea
| | - Sam-Jun Lee
- Department of Sport Rehabilitation, College of Health, Welfare and Education, Tongmyong University, Busan, Korea
| |
Collapse
|
10
|
Kim SH, Ko YJ, Baek SS. Resistance exercise improves short-term memory through inactivation of NF-κB pathway in mice with Parkinson disease. J Exerc Rehabil 2021; 17:81-87. [PMID: 34012933 PMCID: PMC8103184 DOI: 10.12965/jer.2142188.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
Dysfunctions of Parkinson disease (PD) are classified into motor dysfunction, autonomic nervous system dysfunction, and nonmotor dysfunction, and clinical symptoms such as muscle stiffness, tremors, speech disorders, balance disorders, and slow movements appear. Resistance exercise is a main compartment of exercise programs for PD patient. The effect of resistant exercise on short-term memory in PD mice was studied in relation to the activation of nuclear factor (NF)-κB pathway. PD was induced by subcutaneous injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. For resistance exercise, mice performed ladder climbing 5 days per week for 5 weeks. Step-down avoidance test for short-term memory, enzyme-linked immunoassay for tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β, Western bot for NF-κB, NF-κB inhibitor (IκB)-α, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), and Bcl-2, and immunohistochemistry for cleaved caspase-3 were done. Latency time was shortened, TNF-α, IL-6, and IL-1β concentration was increased, NF-κB expression and IκB-α phosphorylation were increased, cleaved caspase-3 and Bax expression was enhanced, and Bcl-2 expression was suppressed by PD induction. Latency time was lengthened, TNF-α, IL-6, and IL-1β concentration was decreased, NF-κB expression and IκB-α phosphorylation were suppressed, cleaved caspase-3 and Bax expression was decreased, and Bcl-2 expression was increased in PD mice by resistance exercise or levodopa treatment. Resistance exercise improved short-term memory by inhibiting secretion of proinflammatory cytokines and apoptosis through inactivation of NF-κB. These effects of resistance exercise were similar to levodopa treatment.
Collapse
Affiliation(s)
- Sang-Hoon Kim
- Department of Sport & Health Sciences, College of Art & Culture, Sangmyung University, Seoul, Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Young Jun Ko
- Major in Sport Service Practice, College of Welfare Convergence, Kangnam University, Youngin, Korea
| | - Seung-Soo Baek
- Department of Sport & Health Sciences, College of Art & Culture, Sangmyung University, Seoul, Korea
| |
Collapse
|
11
|
Ko YJ, Kim BK, Ji ES. Treadmill exercise in obese maternal rats during pregnancy improves spatial memory through activation of phosphatidylinositol 3-kinase pathway in the hippocampus of rat pups. J Exerc Rehabil 2020; 16:483-488. [PMID: 33457383 PMCID: PMC7788246 DOI: 10.12965/jer.2040822.411] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/01/2020] [Indexed: 12/31/2022] Open
Abstract
Maternal nutrition is necessary for the growth of the fetus, and excessive intake of nutrients interferes with brain development in offspring. In the current study, the effect of treadmill running during pregnancy in obese maternal rats on spatial learning memory and spatial working memory in rat pups was investigated. Phosphorylation of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), and extracellular signal-regulated kinase 1 and 2 (ERK1/2) was also identified in rat pups. Female rats were divided into the normal diet group and the high-fat diet group for 7 weeks, including pregnancy and lactation. Maternal treadmill running was performed for 4 weeks. The born rat pups were classified into a control group, a treadmill exercise group, a high-fat diet group, a high-fat diet and treadmill exercise group according to the status of maternal rats. Radial 8-arm maze task for spatial learning memory and Morris water maze task for spatial working memory were done. Western blot analysis was conducted to determine the expressions of PI3K, Akt, ERK1/2. In the current results, maternal treadmill running during pregnancy improved spatial learning memory and spatial working memory in rat pups born to obese maternal rats. This improving effect of memory was due to the enhanced phosphorylation of PI3K, Akt, and ERK1/2 by treadmill running.
Collapse
Affiliation(s)
- Young Jun Ko
- Major in Sport Service Practice, College of Welfare Convergence, Kangnam University, Yongin, Korea
| | - Bo-Kyun Kim
- Department of Emergency Technology, College of Health Science, Gachon University, Incheon, Korea
| | - Eun-Sang Ji
- Department of Sport & Health Care, College of Art & Culture, Sangmyung University, Seoul, Korea.,Department of Physiology, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|