1
|
You J, Zhang Q, Qian L, Shi Z, Wang X, Jia L, Xia Y. Antibacterial periodontal ligament stem cells enhance periodontal regeneration and regulate the oral microbiome. Stem Cell Res Ther 2024; 15:334. [PMID: 39334342 PMCID: PMC11437971 DOI: 10.1186/s13287-024-03939-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND The transplantation of periodontal ligament stem cells (PDLSCs) has been shown to enhance periodontal regeneration in animal models and clinical trials. However, it is not known whether PDLSCs are antibacterial and whether this affects oral microbiota and periodontal regeneration. METHODS We isolated human PDLSCs from periodontal ligament of extracted teeth. Rats' periodontal fenestration defects were prepared, and treated with PDLSC injections (Cell group), using saline injections (Saline group) as the control. The oral microbiota was explored by 16 S rDNA sequencing and compared with that before surgery (PRE group). The antibacterial property of PDLSCs and its underlying mechanism were tested in vitro. RESULTS Microbiome analyses reveal a decreased biodiversity, a changed community structure, and downregulated community functions of the oral microbiome in the Saline group. PDLSCs injections enhance periodontal regeneration, reverse the decrease in diversity, and increase the abundance of non-pathogenic bacterial Bifidobacterium sp. and Lactobacillus sp., making the oral microbiome similar to that of the PRE group. In vitro, PDLSCs inhibit the growth of Staphylococcus aureus, Escherichia coli, and Fusobacterium nucleatum. The main mechanism of action is postulated to involve production of the cationic antimicrobial peptide LL-37. CONCLUSIONS Our findings reveal that PDLSC injections enhance periodontal regeneration and regulate the oral microbiome to foster an oral cavity microenvironment conducive to symbiotic microbiota associated with health.
Collapse
Affiliation(s)
- Jiayi You
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Qian Zhang
- Suzhou Stomatological Hospital, Suzhou, 215000, Jiangsu, People's Republic of China
| | - Linjue Qian
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Zihan Shi
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Xinyue Wang
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Lu Jia
- Department of Emergency General Dentistry, Hebei Key Laboratory of Stomatology, Hebei Medical University, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yang Xia
- The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, 210029, Jiangsu, People's Republic of China.
| |
Collapse
|
2
|
d’Avanzo N, Bruno MC, Giudice A, Mancuso A, Gaetano FD, Cristiano MC, Paolino D, Fresta M. Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules 2021; 26:1643. [PMID: 33804244 PMCID: PMC7999474 DOI: 10.3390/molecules26061643] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022] Open
Abstract
Periodontal diseases are multifactorial disorders, mainly due to severe infections and inflammation which affect the tissues (i.e., gum and dental bone) that support and surround the teeth. These pathologies are characterized by bleeding gums, pain, bad breath and, in more severe forms, can lead to the detachment of gum from teeth, causing their loss. To date it is estimated that severe periodontal diseases affect around 10% of the population worldwide thus making necessary the development of effective treatments able to both reduce the infections and inflammation in injured sites and improve the regeneration of damaged tissues. In this scenario, the use of 3D scaffolds can play a pivotal role by providing an effective platform for drugs, nanosystems, growth factors, stem cells, etc., improving the effectiveness of therapies and reducing their systemic side effects. The aim of this review is to describe the recent progress in periodontal regeneration, highlighting the influence of materials' properties used to realize three-dimensional (3D)-scaffolds, their bio-physical characteristics and their ability to provide a biocompatible platform able to embed nanosystems.
Collapse
Affiliation(s)
- Nicola d’Avanzo
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
- Department of Pharmacy, University of Chieti−Pescara “G. d’Annunzio”, I-66100 Chieti, Italy
| | - Maria Chiara Bruno
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Amerigo Giudice
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Antonia Mancuso
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| | - Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy;
| | - Massimo Fresta
- Department of Health Science, University “Magna Græcia” of Catanzaro, Campus Universitario—Germaneto, Viale Europa, I-88100 Catanzaro, Italy; (N.d.); (M.C.B.); (A.G.); (A.M.)
| |
Collapse
|
3
|
Trikka D, Vassilopoulos S. Periodontal Regeneration with Enamel Matrix Derivative in the Management of Generalized Aggressive Periodontitis: A Case Report with 11-Year Follow-up and Literature Review. J Int Soc Prev Community Dent 2019; 9:13-20. [PMID: 30923688 PMCID: PMC6402248 DOI: 10.4103/jispcd.jispcd_119_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
Objectives: Aggressive periodontitis (AgP) represents an uncommon but rapidly advanced inflammatory process, which involves the destruction of periodontal tissues. This study aimed to report a case of generalized AgP (GAgP), where the treatment approach consists of the utilization of the full-mouth disinfection protocol (FMDP) in conjunction with flap curettage and regenerative appliance of enamel matrix derivatives (EMDs). The associated literature was also reviewed. Materials and Methods: A 19-year-old female patient was diagnosed with GAgP. The treatment was initiated with FMDP and administration of antibiotics. Afterward, open flap debridement was performed, and EMD was selected as the regenerative material for the reconstruction of the periodontal defects. Over an 11-year period and during all the phases of the treatment, the outcomes were regularly evaluated with clinical measurements and radiographic controls. Results: The 11-year results demonstrated no recurrence of disease, and the patient's periodontal health exhibited evident improvement. Overall, the pocket depths presented satisfactory reduction while the clinical attachment loss (CAL) was improved. Both our limited experience and available literature data revealed that the use of EMD in AgP treatment contributes to bone fill of the intrabony defects as well as regeneration of the destructed periodontal apparatus. Conclusions: Although the outcomes of this treatment approach have not been widely evaluated, it seems that the use of EMD may be an effective means of periodontal regeneration in patients with GAgP. Additional prospective studies with adequate number of GAgP patients are essential to thoroughly assess the effectiveness of this approach.
Collapse
Affiliation(s)
- Dimitra Trikka
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, Greece
| | - Spyridon Vassilopoulos
- Department of Periodontology, School of Dentistry, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
4
|
Corbella S, Weinstein R, Francetti L, Taschieri S, Del Fabbro M. Periodontal regeneration in aggressive periodontitis patients: A systematic review of the literature. ACTA ACUST UNITED AC 2016; 8. [DOI: 10.1111/jicd.12245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/26/2016] [Indexed: 12/19/2022]
Affiliation(s)
- Stefano Corbella
- Department of Biomedical, Surgical and Dental Sciences; Università degli Studi di Milano; Milan Italy
- IRCCS Istituto Ortopedico Galeazzi; Milan Italy
| | - Roberto Weinstein
- Department of Biomedical, Surgical and Dental Sciences; Università degli Studi di Milano; Milan Italy
- IRCCS Istituto Ortopedico Galeazzi; Milan Italy
| | - Luca Francetti
- Department of Biomedical, Surgical and Dental Sciences; Università degli Studi di Milano; Milan Italy
- IRCCS Istituto Ortopedico Galeazzi; Milan Italy
| | - Silvio Taschieri
- Department of Biomedical, Surgical and Dental Sciences; Università degli Studi di Milano; Milan Italy
- IRCCS Istituto Ortopedico Galeazzi; Milan Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences; Università degli Studi di Milano; Milan Italy
- IRCCS Istituto Ortopedico Galeazzi; Milan Italy
| |
Collapse
|