1
|
Promising Photocytotoxicity of Water-Soluble Phtalocyanine against Planktonic and Biofilm Pseudomonas aeruginosa Isolates from Lower Respiratory Tract and Chronic Wounds. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alternative methods of killing microbes have been extensively researched in connection with the widespread appearance of antibiotic resistance among pathogenic bacteria. In this study, we report on in vitro antimicrobial phototoxicity research of cationic phthalocyanine with 2-(4-N-methylmorpholin-4-ium-4-yl)ethoxy substituents against selected clinical strains of Pseudomonas aeruginosa isolated from the lower respiratory tract and chronic wounds. The microorganisms tested in the research were analyzed in terms of drug resistance and biofilm formation. The photocytotoxic effect of phthalocyanine was determined by the reduction factor of bacteria. The studied cationic phthalocyanine at a concentration of 1.0 × 10−4 M, when activated by light, revealed a significant reduction factor, ranging from nearly 4 to 6 log, of P. aeruginosa cells when compared to the untreated control group. After single irradiation, a decrease in the number of bacteria in biofilm ranging from 1.3 to 4.2 log was observed, whereas the second treatment significantly improved the bacterial reduction factor from 3.4 to 5.5 log. It is worth mentioning that a boosted cell-death response was observed after the third irradiation, with a bacterial reduction factor ranging from 4.6 to 6.4 log. According to the obtained results, the tested photosensitizer can be considered as a potential antimicrobial photodynamic therapy against multidrug-resistant P. aeruginosa.
Collapse
|
2
|
Poole K, Gilmour C, Farha MA, Parkins MD, Klinoski R, Brown ED. Meropenem potentiation of aminoglycoside activity against Pseudomonas aeruginosa: involvement of the MexXY-OprM multidrug efflux system. J Antimicrob Chemother 2019; 73:1247-1255. [PMID: 29420743 DOI: 10.1093/jac/dkx539] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
Objectives To assess the ability of meropenem to potentiate aminoglycoside (AG) activity against laboratory and AG-resistant cystic fibrosis (CF) isolates of Pseudomonas aeruginosa and to elucidate its mechanism of action. Methods AG resistance gene deletions were engineered into P. aeruginosa laboratory and CF isolates using standard gene replacement technology. Susceptibility to AGs ± meropenem (at ½ MIC) was assessed using a serial 2-fold dilution assay. mexXY expression and MexXY-OprM efflux activity were quantified using quantitative PCR and an ethidium bromide accumulation assay, respectively. Results A screen for agents that rendered WT P. aeruginosa susceptible to a sub-MIC concentration of the AG paromomycin identified the carbapenem meropenem, which potentiated several additional AGs. Meropenem potentiation of AG activity was largely lost in a mutant lacking the MexXY-OprM multidrug efflux system, an indication that it was targeting this efflux system in enhancing P. aeruginosa susceptibility to AGs. Meropenem failed to block AG induction of mexXY expression or MexXY-OprM efflux activity, suggesting that it may be interfering with some MexXY-dependent process linked to AG susceptibility. Meropenem potentiated AG activity versus AG-resistant CF isolates, enhancing susceptibility to at least one AG in all isolates and susceptibility to all tested AGs in 50% of the isolates. Notably, meropenem potentiation of AG activity was linked to MexXY in some but not all CF isolates in which this was examined. Conclusions Meropenem potentiates AG activity against laboratory and CF strains of P. aeruginosa, both dependent on and independent of MexXY, highlighting the complexity of AG resistance in this organism.
Collapse
Affiliation(s)
- Keith Poole
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Christie Gilmour
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Maya A Farha
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Michael D Parkins
- Department of Microbiology Immunology and Infectious Diseases and Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rachael Klinoski
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Eric D Brown
- M.G. DeGroote Institute for Infectious Disease Research and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| |
Collapse
|
3
|
Mikalauskas A, Parkins MD, Poole K. Rifampicin potentiation of aminoglycoside activity against cystic fibrosis isolates of Pseudomonas aeruginosa. J Antimicrob Chemother 2018; 72:3349-3352. [PMID: 28961705 DOI: 10.1093/jac/dkx296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/21/2017] [Indexed: 01/30/2023] Open
Abstract
Objectives Rifampicin potentiates the activity of aminoglycosides (AGs) versus Pseudomonas aeruginosa by targeting the AmgRS two-component system. In this study we examine the impact of rifampicin on the AG susceptibility of cystic fibrosis (CF) lung isolates of P. aeruginosa and the contribution of AmgRS to AG resistance in these isolates. Methods amgR deletion derivatives of clinical isolates were constructed using standard gene replacement technology. Susceptibility to AGs ± rifampicin (at ½ MIC) was assessed using a serial 2-fold dilution assay. Results Rifampicin showed a variable ability to potentiate AG activity versus the CF isolates, enhancing AG susceptibility between 2- and 128-fold. Most strains showed potentiation for at least two AGs, with only a few strains showing no AG potentiation by rifampicin. Notably, loss of amgR increased AG susceptibility although rifampicin potentiation of AG activity was still observed in the ΔamgR derivatives. Conclusions AmgRS contributes to AG resistance in CF isolates of P. aeruginosa and rifampicin shows a variable ability to potentiate AG activity against these, highlighting the complexity of AG resistance in such isolates.
Collapse
Affiliation(s)
- Alaya Mikalauskas
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Michael D Parkins
- Department of Microbiology, Immunology and Infectious Diseases and Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith Poole
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| |
Collapse
|
4
|
Potentiation of Aminoglycoside Activity in Pseudomonas aeruginosa by Targeting the AmgRS Envelope Stress-Responsive Two-Component System. Antimicrob Agents Chemother 2016; 60:3509-18. [PMID: 27021319 DOI: 10.1128/aac.03069-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
A screen for agents that potentiated the activity of paromomycin (PAR), a 4,5-linked aminoglycoside (AG), against wild-type Pseudomonas aeruginosa identified the RNA polymerase inhibitor rifampin (RIF). RIF potentiated additional 4,5-linked AGs, such as neomycin and ribostamycin, but not the clinically important 4,6-linked AGs amikacin and gentamicin. Potentiation was absent in a mutant lacking the AmgRS envelope stress response two-component system (TCS), which protects the organism from AG-generated membrane-damaging aberrant polypeptides and, thus, promotes AG resistance, an indication that RIF was acting via this TCS in potentiating 4,5-linked AG activity. Potentiation was also absent in a RIF-resistant RNA polymerase mutant, consistent with its potentiation of AG activity being dependent on RNA polymerase perturbation. PAR-inducible expression of the AmgRS-dependent genes htpX and yccA was reduced by RIF, suggesting that AG activation of this TCS was compromised by this agent. Still, RIF did not compromise the membrane-protective activity of AmgRS, an indication that it impacted some other function of this TCS. RIF potentiated the activities of 4,5-linked AGs against several AG-resistant clinical isolates, in two cases also potentiating the activity of the 4,6-linked AGs. These cases were, in one instance, explained by an observed AmgRS-dependent expression of the MexXY multidrug efflux system, which accommodates a range of AGs, with RIF targeting of AmgRS undermining mexXY expression and its promotion of resistance to 4,5- and 4,6-linked AGs. Given this link between AmgRS, MexXY expression, and pan-AG resistance in P. aeruginosa, RIF might be a useful adjuvant in the AG treatment of P. aeruginosa infections.
Collapse
|
5
|
Structural model of FeoB, the iron transporter from Pseudomonas aeruginosa, predicts a cysteine lined, GTP-gated pore. Biosci Rep 2016; 36:BSR20160046. [PMID: 26934982 PMCID: PMC4847171 DOI: 10.1042/bsr20160046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 01/23/2023] Open
Abstract
The bacterial ferrous iron acquisition protein FeoB assembles as a homotrimer that is predicted to form a central pore lined by conserved cysteine residues. Structure-function analysis of FeoB indicates a putative mechanism more akin to a GTP-gated channel than a transporter. Iron is essential for the survival and virulence of pathogenic bacteria. The FeoB transporter allows the bacterial cell to acquire ferrous iron from its environment, making it an excellent drug target in intractable pathogens. The protein consists of an N-terminal GTP-binding domain and a C-terminal membrane domain. Despite the availability of X-ray crystal structures of the N-terminal domain, many aspects of the structure and function of FeoB remain unclear, such as the structure of the membrane domain, the oligomeric state of the protein, the molecular mechanism of iron transport, and how this is coupled to GTP hydrolysis at the N-terminal domain. In the present study, we describe the first homology model of FeoB. Due to the lack of sequence homology between FeoB and other transporters, the structures of four different proteins were used as templates to generate the homology model of full-length FeoB, which predicts a trimeric structure. We confirmed this trimeric structure by both blue-native-PAGE (BN-PAGE) and AFM. According to our model, the membrane domain of the trimeric protein forms a central pore lined by highly conserved cysteine residues. This pore aligns with a central pore in the N-terminal GTPase domain (G-domain) lined by aspartate residues. Biochemical analysis of FeoB from Pseudomonas aeruginosa further reveals a putative iron sensor domain that could connect GTP binding/hydrolysis to the opening of the pore. These results indicate that FeoB might not act as a transporter, but rather as a GTP-gated channel.
Collapse
|
6
|
Carevic M, Öz H, Fuchs K, Laval J, Schroth C, Frey N, Hector A, Bilich T, Haug M, Schmidt A, Autenrieth SE, Bucher K, Beer-Hammer S, Gaggar A, Kneilling M, Benarafa C, Gao JL, Murphy PM, Schwarz S, Moepps B, Hartl D. CXCR1 Regulates Pulmonary Anti-Pseudomonas Host Defense. J Innate Immun 2016; 8:362-73. [PMID: 26950764 DOI: 10.1159/000444125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 01/19/2016] [Indexed: 11/19/2022] Open
Abstract
Pseudomonas aeruginosa is a key opportunistic pathogen causing disease in cystic fibrosis (CF) and other lung diseases such as chronic obstructive pulmonary disease (COPD). However, the pulmonary host defense mechanisms regulating anti-P. aeruginosa immunity remain incompletely understood. Here we demonstrate, by studying an airway P. aeruginosa infection model, in vivo bioluminescence imaging, neutrophil effector responses and human airway samples, that the chemokine receptor CXCR1 regulates pulmonary host defense against P. aeruginosa. Mechanistically, CXCR1 regulates anti-Pseudomonas neutrophil responses through modulation of reactive oxygen species and interference with Toll-like receptor 5 expression. These studies define CXCR1 as a novel, noncanonical chemokine receptor that regulates pulmonary anti-Pseudomonas host defense with broad implications for CF, COPD and other infectious lung diseases.
Collapse
Affiliation(s)
- M Carevic
- Children's Hospital and Interdisciplinary Center for Infectious Diseases, University of Tx00FC;bingen, Tx00FC;bingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Mangoni ML, Luca V, McDermott AM. Fighting microbial infections: A lesson from amphibian skin-derived esculentin-1 peptides. Peptides 2015; 71:286-95. [PMID: 25959536 DOI: 10.1016/j.peptides.2015.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 01/20/2023]
Abstract
Due to the growing emergence of resistance to commercially available antibiotics/antimycotics in virtually all clinical microbial pathogens, the discovery of alternative anti-infective agents, is greatly needed. Gene-encoded antimicrobial peptides (AMPs) hold promise as novel therapeutics. In particular, amphibian skin is one of the richest storehouses of AMPs, especially that of the genus Rana, with esculentins-1 being among the longest (46 amino acids) AMPs found in nature to date. Here, we report on the recently discovered in vitro and in vivo activities and mechanism of action of two derivatives of the N-terminal part of esculentin-1a and -1b peptides, primarily against two relevant opportunistic microorganisms causing a large number of life-threatening infections worldwide; i.e. the Gram-negative bacterium Pseudomonas aeruginosa and the yeast Candida albicans. Because of distinct advantages compared to several mammalian AMPs, the two selected frog skin AMP-derivatives represent attractive candidates for the development of new antimicrobial compounds with expanded properties, for both human and veterinary medicine.
Collapse
Affiliation(s)
- Maria Luisa Mangoni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro, 5-00185 Rome, Italy.
| | - Vincenzo Luca
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale Aldo Moro, 5-00185 Rome, Italy
| | - Alison M McDermott
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, TX, USA
| |
Collapse
|
8
|
Lau CHF, Krahn T, Gilmour C, Mullen E, Poole K. AmgRS-mediated envelope stress-inducible expression of the mexXY multidrug efflux operon of Pseudomonas aeruginosa. Microbiologyopen 2014; 4:121-35. [PMID: 25450797 PMCID: PMC4335980 DOI: 10.1002/mbo3.226] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 10/27/2014] [Accepted: 11/03/2014] [Indexed: 01/07/2023] Open
Abstract
AmgRS is an envelope stress-responsive two-component system and aminoglycoside resistance determinant in Pseudomonas aeruginosa that is proposed to protect cells from membrane damage caused by aminoglycoside-generated mistranslated polypeptides. Consistent with this, a ΔamgR strain showed increased aminoglycoside-promoted membrane damage, damage that was largely absent in AmgRS-activated amgS-mutant strains. Intriguingly, one such mutation, V121G, while providing for enhanced resistance to aminoglycosides, rendered P. aeruginosa susceptible to several ribosome-targeting nonaminoglycoside antimicrobials that are inducers and presumed substrates of the MexXY-OprM multidrug efflux system. Surprisingly, the amgSV 121G mutation increased mexXY expression threefold, suggesting that export of these nonaminoglycosides was compromised in the amgSV 121G mutant. Nonetheless, a link was established between AmgRS activation and mexXY expression and this was confirmed in studies showing that aminoglycoside-promoted mexXY expression is dependent on AmgRS. While nonaminoglycosides also induced mexXY expression, this was not AmgRS-dependent, consistent with these agents not generating mistranslated polypeptides and not activating AmgRS. The aminoglycoside inducibility of mexXY was abrogated in a mutant lacking the AmgRS target genes htpX and PA5528, encoding a presumed cytoplasmic membrane-associated protease and a membrane protein of unknown function, respectively. Thus, aminoglycoside induction of mexXY is a response to membrane damage and activation of the AmgRS two-component system.
Collapse
Affiliation(s)
- Calvin Ho-Fung Lau
- Department of Biomedical and Molecular Sciences, Botterell Hall, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | | | | | | | | |
Collapse
|
9
|
Guiu A, Buendía B, Llorca L, Gómez Punter RM, Girón R. Chryseobacterium spp., ¿nuevo patógeno oportunista asociado a fibrosis quística? Enferm Infecc Microbiol Clin 2014; 32:497-501. [DOI: 10.1016/j.eimc.2013.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 08/09/2013] [Indexed: 11/24/2022]
|
10
|
Park KS, Lee J, Jang SC, Kim SR, Jang MH, Lötvall J, Kim YK, Gho YS. Pulmonary inflammation induced by bacteria-free outer membrane vesicles from Pseudomonas aeruginosa. Am J Respir Cell Mol Biol 2014; 49:637-45. [PMID: 23713467 DOI: 10.1165/rcmb.2012-0370oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is often involved in lung diseases such as cystic fibrosis. These bacteria can release outer membrane vesicles (OMVs), which are bilayered proteolipids with diameters of approximately 20 to 250 nm. In vitro, these OMVs activate macrophages and airway epithelial cells. The aim of this study was to determine whether OMVs from P. aeruginosa can induce pulmonary inflammation in vivo and to elucidate the mechanisms involved. Bacteria-free OMVs were isolated from P. aeruginosa cultures. Wild-type, Toll-like receptor (TLR)2 and TLR4 knockout mice were exposed to OMVs by the airway, and inflammation in the lung was assessed using differential counts, histology, and quantification of chemokines and cytokines. The involvement of the TLR2 and TLR4 pathways was studied in human cells using transfection. OMVs given to the mouse lung caused dose- and time-dependent pulmonary cellular inflammation. Furthermore, OMVs increased concentrations of several chemokines and cytokines in the mouse lungs and mouse alveolar macrophages. The inflammatory responses to OMVs were comparable to those of live bacteria and were only partly regulated by the TLR2 and TLR4 pathways, according to studies in knockout mice. This study shows that OMVs from P. aeruginosa cause pulmonary inflammation without live bacteria in vivo. This effect is only partly controlled by TLR2 and TLR4. The role of OMVs in clinical disease warrants further studies because targeting of OMVs in addition to live bacteria may add clinical benefit compared with treating with antibiotics alone.
Collapse
Affiliation(s)
- Kyong-Su Park
- 1 Department of Life Sciences, Pohang University of Science and Technology, and
| | | | | | | | | | | | | | | |
Collapse
|
11
|
A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk factors for carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58:2626-37. [PMID: 24550343 DOI: 10.1128/aac.01758-13] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A systematic review and meta-analyses were performed to identify the risk factors associated with carbapenem-resistant Pseudomonas aeruginosa and to identify sources and reservoirs for the pathogen. A systematic search of PubMed and Embase databases from 1 January 1987 until 27 January 2012 identified 1,662 articles, 53 of which were included in a systematic review and 38 in a random-effects meta-analysis study. The use of carbapenem, use of fluoroquinolones, use of vancomycin, use of other antibiotics, having medical devices, intensive care unit (ICU) admission, having underlying diseases, patient characteristics, and length of hospital stay were significant risk factors in multivariate analyses. The meta-analyses showed that carbapenem use (odds ratio [OR] = 7.09; 95% confidence interval [CI] = 5.43 to 9.25) and medical devices (OR = 5.11; 95% CI = 3.55 to 7.37) generated the highest pooled estimates. Cumulative meta-analyses showed that the pooled estimate of carbapenem use was stable and that the pooled estimate of the risk factor "having medical devices" increased with time. We conclude that our results highlight the importance of antibiotic stewardship and the thoughtful use of medical devices in helping prevent outbreaks of carbapenem-resistant P. aeruginosa.
Collapse
|
12
|
Abstract
OBJECTIVES The aim of this study was to evaluate in patients with cystic fibrosis (CF) the effect of Lactobacillus reuteri (LR) on the rate of respiratory exacerbations and of the infections of both upper respiratory and gastrointestinal tracts. METHODS Prospective randomized, double-blind, placebo-controlled study enrolling 61 patients with CF with mild-to-moderate lung disease at the Regional Center for CF of the Department of Pediatrics, University of Rome "La Sapienza." All of the patients were not hospital inpatients at the time of the enrollment. Inclusion criteria were forced expiratory volume in the first second (FEV1) >70% predicted; no inhaled or systemic steroids, no anti-inflammatory drugs, antileukotrienes, and mast cell membrane stabilizers; and no serious organ involvement. Exclusion criteria were a history of pulmonary exacerbation or upper respiratory infection in the previous 2 months; changes in medications in the last 2 months; a history of hemoptysis in the last 2 months; and colonization with Burkholderia cepacia or mycobacteria. Patients were randomly assigned to receive LR (30 patients) in 5 drops per day (10(10) colony-forming units) or placebo (31 patients) for 6 months. Main outcomes were number of episodes of pulmonary exacerbations and hospital admissions for pulmonary exacerbations, number of gastrointestinal and upper respiratory tract infections. FEV1, fecal calprotectin, and cytokine profile in induced sputum and plasma were assessed at baseline and at the end of the trial. RESULTS Pulmonary exacerbations were significantly reduced in the LR group compared with the placebo group (P<0.01; odds ratio 0.06 [95% confidence interval {CI} 0-0.40]; number needed to treat 3 [95% CI 2-7]). Similarly, the number of upper respiratory tract infections (in our series only otitis) was significantly reduced in the LR group compared with the placebo group (P<0.05; odds ratio 0.14 [95% CI 0-0.96]; number needed to treat 6 [95% CI 3-102]). The 2 groups did not differ statistically in the mean number and duration of hospitalizations for pulmonary exacerbations and gastrointestinal infections. There was no significant statistical difference in the mean delta value of FEV1, fecal calprotectin concentration, and tested cytokines (tumor necrosis factor-α and interleukin-8) between the 2 groups. CONCLUSIONS LR reduces pulmonary exacerbations and upper respiratory tract infections in patients with CF with mild-to-moderate lung disease. LR administration may have a beneficial effect on the disease course of CF.
Collapse
|
13
|
Romano S, Bourdier A, Parer S, Masnou A, Burgel L, Raczka F, Lamy B, Jumas-Bilak E, Lotthé A. Peripheral venous catheter and bloodstream infection caused by Pseudomonas aeruginosa after a contaminated preoperative shower. Infect Control Hosp Epidemiol 2013; 34:544-6. [PMID: 23571380 DOI: 10.1086/670221] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
14
|
Porphyromonas gingivalis modulates Pseudomonas aeruginosa-induced apoptosis of respiratory epithelial cells through the STAT3 signaling pathway. Microbes Infect 2013; 16:17-27. [PMID: 24140557 DOI: 10.1016/j.micinf.2013.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/22/2013] [Accepted: 10/04/2013] [Indexed: 12/31/2022]
Abstract
Pseudomonas aeruginosa is an important opportunistic bacterial pathogen, causing infections of respiratory and other organ systems in immunocompromised hosts that may invade and proliferate in mucosal epithelial cells to induce apoptosis. Previous studies suggest that oral bacteria, especially gram-negative periodontal pathogens, may enhance P. aeruginosa invasion into respiratory epithelial cells to augment tissue destruction. In this study, we investigated the effect of the periodontopathogen Porphyromonas gingivalis on P. aeruginosa-induced epithelial cell apoptosis. P. gingivalis invasion transiently inhibited P. aeruginosa-induced apoptosis in respiratory epithelial cells via the signal transducer and activator of transcription 3 (STAT3) signaling pathway. The activated STAT3 up-regulated the downstream anti-apoptotic moleculars survivin and B-cell leukemia-2 (bcl-2). This process was accompanied by down-regulation of pro-apoptosis molecular Bcl-2-associated death promoter (bad) and caspase-3 activity inhibition. In addition, the activation of the STAT3 pathway was affected by P. gingivalis in a dose-dependent manner. Finally, co-invasion of P. aeruginosa and P. gingivalis led to greater cell death compared with P. aeruginosa challenge alone. These results suggest that regulation of P. aeruginosa-induced apoptosis by P. gingivalis contributes to the pathogenesis of respiratory disease. Interference with this process may provide a potential therapeutic strategy for the treatment and prevention of respiratory disease.
Collapse
|
15
|
Luca V, Stringaro A, Colone M, Pini A, Mangoni ML. Esculentin(1-21), an amphibian skin membrane-active peptide with potent activity on both planktonic and biofilm cells of the bacterial pathogen Pseudomonas aeruginosa. Cell Mol Life Sci 2013; 70:2773-86. [PMID: 23503622 PMCID: PMC11113931 DOI: 10.1007/s00018-013-1291-7] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/26/2013] [Accepted: 02/05/2013] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterial pathogen that forms sessile communities, named biofilms. The non-motile forms are very difficult to eradicate and are often associated with the establishment of persistent infections, especially in patients with cystic fibrosis. The resistance of P. aeruginosa to conventional antibiotics has become a growing health concern worldwide and has prompted the search for new anti-infective agents with new modes of action. Naturally occurring antimicrobial peptides (AMPs) represent promising future template candidates. Here we report on the potent activity and membrane-perturbing effects of the amphibian AMP esculentin(1-21), on both the free-living and sessile forms of P. aeruginosa, as a possible mechanism for biofilm disruption. Furthermore, the findings that esculentin(1-21) is able to prolong survival of animals in models of sepsis and pulmonary infection indicate that this peptide can be a promising template for the generation of new antibiotic formulations to advance care of infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Vincenzo Luca
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
| | - Annarita Stringaro
- Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, Rome, Italy
| | - Marisa Colone
- Dipartimento di Tecnologie e Salute, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Pini
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, Siena, Italy
| | - Maria Luisa Mangoni
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza Università di Roma, Rome, Italy
- Department of Biochemical Sciences, La Sapienza University, Via degli Apuli 9, 00185 Rome, Italy
| |
Collapse
|
16
|
Rico-Jiménez M, Muñoz-Martínez F, García-Fontana C, Fernandez M, Morel B, Ortega A, Ramos JL, Krell T. Paralogous chemoreceptors mediate chemotaxis towards protein amino acids and the non-protein amino acid gamma-aminobutyrate (GABA). Mol Microbiol 2013; 88:1230-43. [PMID: 23650915 DOI: 10.1111/mmi.12255] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2013] [Indexed: 01/31/2023]
Abstract
The paralogous receptors PctA, PctB and PctC of Pseudomonas aeruginosa were reported to mediate chemotaxis to amino acids, intermediates of amino acid metabolism and chlorinated hydrocarbons. We show that the recombinant ligand binding regions (LBRs) of PctA, PctB and PctC bind 17, 5 and 2 l-amino acids respectively. In addition, PctC-LBR recognized GABA but not any other structurally related compound. l-Gln, one of the three amino acids that is not recognized by PctA-LBR, was the most tightly binding ligand to PctB suggesting that PctB has evolved to mediate chemotaxis primarily towards l-Gln. Bacteria were efficiently attracted to l-Gln and GABA, but mutation of pctB and pctC, respectively, abolished chemoattraction. The physiological relevance of taxis towards GABA is proposed to reside in an interaction with plants. LBRs were predicted to adopt double PDC (PhoQ/DcuS/CitA) like structures and site-directed mutagenesis studies showed that ligands bind to the membrane-distal module. Analytical ultracentrifugation studies have shown that PctA-LBR and PctB-LBR are monomeric in the absence and presence of ligands, which is in contrast to the enterobacterial receptors that require sensor domain dimers for ligand recognition.
Collapse
Affiliation(s)
- Miriam Rico-Jiménez
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
PA26, a novel lytic bacteriophage infecting Pseudomonas aeruginosa, was isolated, and the whole genome was sequenced. It was found to belong to the myoviridae by an electron microscopic observation. It had a linear double-stranded DNA genome of 72,321 bp. Genomic analysis showed that it resembled another Pseudomonas phage, LIT1.
Collapse
|
18
|
Pseudomonas aeruginosa directly shunts β-oxidation degradation intermediates into de novo fatty acid biosynthesis. J Bacteriol 2012; 194:5185-96. [PMID: 22753057 DOI: 10.1128/jb.00860-12] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified the fatty acid synthesis (FAS) initiation enzyme in Pseudomonas aeruginosa as FabY, a β-ketoacyl synthase KASI/II domain-containing enzyme that condenses acetyl coenzyme A (acetyl-CoA) with malonyl-acyl carrier protein (ACP) to make the FAS primer β-acetoacetyl-ACP in the accompanying article (Y. Yuan, M. Sachdeva, J. A. Leeds, and T. C. Meredith, J. Bacteriol. 194:5171-5184, 2012). Herein, we show that growth defects stemming from deletion of fabY can be suppressed by supplementation of the growth media with exogenous decanoate fatty acid, suggesting a compensatory mechanism. Fatty acids eight carbons or longer rescue growth by generating acyl coenzyme A (acyl-CoA) thioester β-oxidation degradation intermediates that are shunted into FAS downstream of FabY. Using a set of perdeuterated fatty acid feeding experiments, we show that the open reading frame PA3286 in P. aeruginosa PAO1 intercepts C(8)-CoA by condensation with malonyl-ACP to make the FAS intermediate β-keto decanoyl-ACP. This key intermediate can then be extended to supply all of the cellular fatty acid needs, including both unsaturated and saturated fatty acids, along with the 3-hydroxyl fatty acid acyl groups of lipopolysaccharide. Heterologous PA3286 expression in Escherichia coli likewise established the fatty acid shunt, and characterization of recombinant β-keto acyl synthase enzyme activity confirmed in vitro substrate specificity for medium-chain-length acyl CoA thioester acceptors. The potential for the PA3286 shunt in P. aeruginosa to curtail the efficacy of inhibitors targeting FabY, an enzyme required for FAS initiation in the absence of exogenous fatty acids, is discussed.
Collapse
|