1
|
Bhatt P, Sharpe A, Staines K, Wallace N, Withers A. Topical desiccating agent (DEBRICHEM): an accessible debridement option for removing biofilm in hard-to-heal wounds. J Wound Care 2024; 33:S4-S11. [PMID: 38752844 DOI: 10.12968/jowc.2024.33.sup5b.s4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
It is now assumed that all hard-to-heal wounds contain biofilm. Debridement plays a key role in wound-bed preparation, as it can remove biofilm along with the devitalised tissue, potentially leaving a clean wound bed that is more likely to progress towards healing. The gold standard methods of debridement (surgical and sharp) are the least used, as they require specialist training and are often not readily available at the point of need. Most other methods can be used by generalists but are slower. They all need regular applications. The topical desiccating agent DEBRICHEM is an innovative alternative, as it is fast, effective and can be used in all clinical settings, as well as typically requiring only a single use. This article describes best practice for achieving optimal outcomes with its use.
Collapse
Affiliation(s)
- Priti Bhatt
- Community Tissue Viability Lead, Guy's and St Thomas' NHS Foundation Trust
| | - Andrew Sharpe
- Advanced Podiatrist, Salford Care Organisation, Northern Care Alliance NHS Foundation Trust
| | | | - Nicola Wallace
- Leg Ulcer Clinical Nurse specialist, Central London Community Healthcare NHS Trust
| | - Amy Withers
- Lead Tissue Viability Nurse, Acute Services, Manchester University NHS Foundation Trust
| |
Collapse
|
2
|
Manimaran M, Teo YY, Kah JCY, Beishenaliev A, Loke YL, Foo YY, Ng SF, Chee CF, Chin SP, Faruqu FN, Chang CY, Misran M, Chung LY, Leo BF, Chiou SH, Chang CC, Tay ST, Kiew LV. PDADMAC/Alginate-Coated Gold Nanorod For Eradication of Staphylococcus Aureus Biofilms. Int J Nanomedicine 2024; 19:3697-3714. [PMID: 38681091 PMCID: PMC11055529 DOI: 10.2147/ijn.s452085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024] Open
Abstract
Introduction Over 75% of clinical microbiological infections are caused by bacterial biofilms that grow on wounds or implantable medical devices. This work describes the development of a new poly(diallyldimethylammonium chloride) (PDADMAC)/alginate-coated gold nanorod (GNR/Alg/PDADMAC) that effectively disintegrates the biofilms of Staphylococcus aureus (S. aureus), a prominent pathogen responsible for hospital-acquired infections. Methods GNR was synthesised via seed-mediated growth method, and the resulting nanoparticles were coated first with Alg and then PDADMAC. FTIR, zeta potential, transmission electron microscopy, and UV-Vis spectrophotometry analysis were performed to characterise the nanoparticles. The efficacy and speed of the non-coated GNR and GNR/Alg/PDADMAC in disintegrating S. aureus-preformed biofilms, as well as their in vitro biocompatibility (L929 murine fibroblast) were then studied. Results The synthesised GNR/Alg/PDADMAC (mean length: 55.71 ± 1.15 nm, mean width: 23.70 ± 1.13 nm, aspect ratio: 2.35) was biocompatible and potent in eradicating preformed biofilms of methicillin-resistant (MRSA) and methicillin-susceptible S. aureus (MSSA) when compared to triclosan, an antiseptic used for disinfecting S. aureus colonisation on abiotic surfaces in the hospital. The minimum biofilm eradication concentrations of GNR/Alg/PDADMAC (MBEC50 for MRSA biofilm = 0.029 nM; MBEC50 for MSSA biofilm = 0.032 nM) were significantly lower than those of triclosan (MBEC50 for MRSA biofilm = 10,784 nM; MBEC50 for MRSA biofilm 5967 nM). Moreover, GNR/Alg/PDADMAC was effective in eradicating 50% of MRSA and MSSA biofilms within 17 min when used at a low concentration (0.15 nM), similar to triclosan at a much higher concentration (50 µM). Disintegration of MRSA and MSSA biofilms was confirmed by field emission scanning electron microscopy and confocal laser scanning microscopy. Conclusion These findings support the potential application of GNR/Alg/PDADMAC as an alternative agent to conventional antiseptics and antibiotics for the eradication of medically important MRSA and MSSA biofilms.
Collapse
Affiliation(s)
- Malarmugila Manimaran
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yin Yin Teo
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - James Chen Yong Kah
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore
| | - Adilet Beishenaliev
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yean Leng Loke
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yiing Yee Foo
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shiow-Fern Ng
- Centre for Drug Delivery Technology and Vaccine, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Chin Fei Chee
- Nanotechnology Catalysis Research Centre, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Sek Peng Chin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Farid Nazer Faruqu
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chia-Yu Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| | - Misni Misran
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lip Yong Chung
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Bey Fen Leo
- Department of Molecular Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, Republic of China
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, Republic of China
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
- Institute of Physics, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | - Sun Tee Tay
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan, Republic of China
| |
Collapse
|
3
|
Parnham A, Bousfield C. The influence of matrix metalloproteases and biofilm on chronic wound healing: a discussion. Br J Community Nurs 2019; 23:S22-S29. [PMID: 29493309 DOI: 10.12968/bjcn.2018.23.sup3.s22] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chronicity in wound healing is a challenge for health services financially and scientifically, with negative consequences on patients' lives. This paper seeks to explore why chronic wounds fail to heal in relation to the inflammatory cellular dysfunction associated with biofilm development. Findings demonstrate an association between chronic wounds failing to heal, the presence of devitalised tissue and abnormal immune cell activity with a consequential excessive release of harmful matrix metalloproteases (MMPs). This process perpetuates the cycle of wound chronicity and extracellular matrix destruction, which prolongs the inflammatory response, fuelling biofilm formation. Evidence suggests that 'trapping' MMPs may increase new tissue growth but, while devitalised tissue is present, phagocytic cells continue to secrete MMPs and chronicity persists. Consequently, by removing the trigger and implementing effective, sustained debridement of devitalised tissue, both MMP and biofilm production will be diminished, with positive healing outcomes.
Collapse
Affiliation(s)
- Alison Parnham
- CNS Tissue Viability, Nottingham CityCare. Practitioner Health Lecturer, University of Nottingham
| | - Chrissie Bousfield
- Director of Postgraduate Education and Senior Fellow of the Higher Education Academy, University of Nottingham
| |
Collapse
|
4
|
Avci P, Karimi M, Sadasivam M, Antunes-Melo WC, Carrasco E, Hamblin MR. In-vivo monitoring of infectious diseases in living animals using bioluminescence imaging. Virulence 2017; 9:28-63. [PMID: 28960132 PMCID: PMC6067836 DOI: 10.1080/21505594.2017.1371897] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Traditional methods of localizing and quantifying the presence of pathogenic microorganisms in living experimental animal models of infections have mostly relied on sacrificing the animals, dissociating the tissue and counting the number of colony forming units. However, the discovery of several varieties of the light producing enzyme, luciferase, and the genetic engineering of bacteria, fungi, parasites and mice to make them emit light, either after administration of the luciferase substrate, or in the case of the bacterial lux operon without any exogenous substrate, has provided a new alternative. Dedicated bioluminescence imaging (BLI) cameras can record the light emitted from living animals in real time allowing non-invasive, longitudinal monitoring of the anatomical location and growth of infectious microorganisms as measured by strength of the BLI signal. BLI technology has been used to follow bacterial infections in traumatic skin wounds and burns, osteomyelitis, infections in intestines, Mycobacterial infections, otitis media, lung infections, biofilm and endodontic infections and meningitis. Fungi that have been engineered to be bioluminescent have been used to study infections caused by yeasts (Candida) and by filamentous fungi. Parasitic infections caused by malaria, Leishmania, trypanosomes and toxoplasma have all been monitored by BLI. Viruses such as vaccinia, herpes simplex, hepatitis B and C and influenza, have been studied using BLI. This rapidly growing technology is expected to continue to provide much useful information, while drastically reducing the numbers of animals needed in experimental studies.
Collapse
Affiliation(s)
- Pinar Avci
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA
| | - Mahdi Karimi
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,c Department of Medical Nanotechnology , School of Advanced Technologies in Medicine, Iran University of Medical Sciences , Tehran , Iran.,d Cellular and Molecular Research Center, Iran University of Medical Sciences , Tehran , Iran
| | - Magesh Sadasivam
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,e Amity Institute of Nanotechnology, Amity University Uttar Pradesh , Noida , India
| | - Wanessa C Antunes-Melo
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,f University of Sao Paulo , Sao Carlos-SP , Brazil
| | - Elisa Carrasco
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,g Department of Biosciences , Durham University , Durham , United Kingdom
| | - Michael R Hamblin
- a Wellman Center for Photomedicine, Massachusetts General Hospital , Boston , MA , USA.,b Department of Dermatology , Harvard Medical School , Boston , MA , USA.,h Harvard-MIT Division of Health Sciences and Technology , Cambridge , MA , USA
| |
Collapse
|
5
|
Desroche N, Dropet C, Janod P, Guzzo J. Antibacterial properties and reduction of MRSA biofilm with a dressing combining polyabsorbent fibres and a silver matrix. J Wound Care 2016; 25:577-584. [DOI: 10.12968/jowc.2016.25.10.577] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- N. Desroche
- Nexidia SAS, 15 Rue de Mayence, F-21000 DIJON
| | - C. Dropet
- Nexidia SAS, 15 Rue de Mayence, F-21000 DIJON
| | - P. Janod
- Urgo Recherche Innovation et Développement, 42 rue de Longvic, F-21300 CHENOVE
| | - J. Guzzo
- UMR A, Procédés Alimentaires et Microbiologiques, Université de Bourgogne, IUVV, rue Claude Ladrey, F-21000 DIJON
| |
Collapse
|
6
|
Kwak YH, Lee J, Lee J, Kwak SH, Oh S, Paek SH, Ha UH, Seo S. A simple and low-cost biofilm quantification method using LED and CMOS image sensor. J Microbiol Methods 2015; 107:150-6. [PMID: 25455019 DOI: 10.1016/j.mimet.2014.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 01/12/2023]
Abstract
A novel biofilm detection platform, which consists of a cost-effective red, green, and blue light-emitting diode (RGB LED) as a light source and a lens-free CMOS image sensor as a detector, is designed. This system can measure the diffraction patterns of cells from their shadow images, and gather light absorbance information according to the concentration of biofilms through a simple image processing procedure. Compared to a bulky and expensive commercial spectrophotometer, this platform can provide accurate and reproducible biofilm concentration detection and is simple, compact, and inexpensive. Biofilms originating from various bacterial strains, including Pseudomonas aeruginosa (P. aeruginosa), were tested to demonstrate the efficacy of this new biofilm detection approach. The results were compared with the results obtained from a commercial spectrophotometer. To utilize a cost-effective light source (i.e., an LED) for biofilm detection, the illumination conditions were optimized. For accurate and reproducible biofilm detection, a simple, custom-coded image processing algorithm was developed and applied to a five-megapixel CMOS image sensor, which is a cost-effective detector. The concentration of biofilms formed by P. aeruginosa was detected and quantified by varying the indole concentration, and the results were compared with the results obtained from a commercial spectrophotometer. The correlation value of the results from those two systems was 0.981 (N = 9, P < 0.01) and the coefficients of variation (CVs) were approximately threefold lower at the CMOS image-sensor platform.
Collapse
Affiliation(s)
- Yeon Hwa Kwak
- Department of Electronics and Information Engineering, Korea University, Sejong 339-700, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Leaper D, Assadian O, Edmiston CE. Approach to chronic wound infections. Br J Dermatol 2015; 173:351-8. [PMID: 25772951 DOI: 10.1111/bjd.13677] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2014] [Indexed: 12/13/2022]
Abstract
Infection is the likeliest single cause of delayed healing in healing of chronic open wounds by secondary intention. If neglected it can progress from contamination to colonization and local infection through to systemic infection, sepsis and multiple organ dysfunction syndrome, and it can be life-threatening. Infection in chronic wounds is not as easy to define as in acute wounds, and is complicated by the presence of biofilms. There is, as yet, no diagnostic for biofilm presence, but it contributes to excessive inflammation - through excessive and prolonged stimulation of nitric oxide, inflammatory cytokines and free radicals - and activation of immune complexes and complement, leading to a delay in healing. Control of biofilm is a key part of chronic wound management. Maintenance debridement and use of topical antimicrobials (antiseptics) are more effective than antibiotics, which should be reserved for treating spreading local and systemic infection. The continuing rise of antimicrobial resistance to antibiotics should lead us to reserve their use for these indications, as no new effective antibiotics are in the research pipeline. Antiseptics are effective through many mechanisms of action, unlike antibiotics, which makes the development of resistance to them unlikely. There is little evidence to support the theoretical risk that antiseptics select resistant pathogens. However, the use of antiseptic dressings for preventing and managing biofilm and infection progression needs further research involving well-designed, randomized controlled trials.
Collapse
Affiliation(s)
- D Leaper
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, U.K
| | - O Assadian
- Clinical Microbiology, Infection Control, Infectious Diseases and Tropical Medicine, Department of Hospital Hygiene and Infection Control, Medical University of Vienna, Vienna, Austria
| | - C E Edmiston
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, U.S.A
| |
Collapse
|
8
|
Edmiston CE, McBain AJ, Roberts C, Leaper D. Clinical and microbiological aspects of biofilm-associated surgical site infections. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 830:47-67. [PMID: 25366220 DOI: 10.1007/978-3-319-11038-7_3] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
While microbial biofilms have been recognized as being ubiquitous in nature for the past 40 years, it has only been within the past 20 years that clinical practitioners have realized that biofilm play a significant role in both device-related and tissue-based infections. The global impact of surgical site infections (SSIs) is monumental and as many as 80 % of these infections may involve a microbial biofilm. Recent studies suggest that biofilm- producing organisms play a significant role in persistent skin and soft tissue wound infections in the postoperative surgical patient population. Biofilm, on an organizational level, allows bacteria to survive intrinsic and extrinsic defenses that would inactivate the dispersed (planktonic) bacteria. SSIs associated with biomedical implants are notoriously difficult to eradicate using antibiotic regimens that would typically be effective against the same bacteria growing under planktonic conditions. This biofilm-mediated phenomenon is characterized as antimicrobial recalcitrance, which is associated with the survival of a subset of cells including "persister" cells. The ideal method to manage a biofilm-mediated surgical site wound infection is to prevent it from occurring through rational use of antibiotic prophylaxis, adequate skin antisepsis prior to surgery and use of innovative in-situ irrigation procedures; together with antimicrobial suture technology in an effort to promote wound hygiene at the time of closure; once established, biofilm removal remains a significant clinical problem.
Collapse
Affiliation(s)
- Charles E Edmiston
- Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA,
| | | | | | | |
Collapse
|
9
|
Venkatakrishnan V, Packer NH, Thaysen-Andersen M. Host mucin glycosylation plays a role in bacterial adhesion in lungs of individuals with cystic fibrosis. Expert Rev Respir Med 2014; 7:553-76. [DOI: 10.1586/17476348.2013.837752] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|