1
|
Pool-Yam L, Ramón-Sierra J, Oliva AI, Zamora-Bustillos R, Ortiz-Vázquez E. Effect of conA-unbound proteins from Melipona beecheii honey on the formation of Pseudomonas aeruginosa ATCC 27853 biofilm. Arch Microbiol 2024; 206:54. [PMID: 38180520 DOI: 10.1007/s00203-023-03783-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/06/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic bacterium that can form a biofilm with the ability to colonize different surfaces and for increasing resistance to antibiotics. An alternative to solve this problem may be the use of non-glucose/mannose glycosylated proteins from Melipona beecheii honey, which are capable of inhibiting the growth of this pathogen. In this work, the antibiofilm activity of the conA-unbound protein fraction (F1) from M. beecheii was evaluated. The crude protein extract (CPE) and the F1 fraction inhibited the P. aeruginosa biofilm growth above 80% at 4 and 1.3 µg/mL, respectively. These proteins affected the structure of the biofilm, as well as fleQ and fleR gene expressions involved in the formation and regulation of the P. aeruginosa biofilm. The results demonstrated that the F1 fraction proteins of M. beecheii honey inhibit and affect the formation of the P. aeruginosa biofilm.
Collapse
Affiliation(s)
- Luis Pool-Yam
- División de Estudios de Posgrado E Investigación, Instituto Tecnológico de Conkal, Avenida Tecnológico S/N Conkal, C.P. 97345, Conkal, Yucatán, México
| | - Jesús Ramón-Sierra
- División de Estudios de Posgrado E Investigación, Instituto Tecnológico de Mérida, Av. Tecnológico Km. 4.5 S/N, C.P. 97118, Mérida, Yucatán, México
| | - A I Oliva
- Departamento de Física Aplicada, CINVESTAV-IPN, Unidad Mérida, Carretera Antigua a Progreso Km. 6, Cordemex, C.P. 97310, Mérida, Yucatán, México
| | - Roberto Zamora-Bustillos
- División de Estudios de Posgrado E Investigación, Instituto Tecnológico de Conkal, Avenida Tecnológico S/N Conkal, C.P. 97345, Conkal, Yucatán, México.
| | - Elizabeth Ortiz-Vázquez
- División de Estudios de Posgrado E Investigación, Instituto Tecnológico de Mérida, Av. Tecnológico Km. 4.5 S/N, C.P. 97118, Mérida, Yucatán, México.
| |
Collapse
|
2
|
Aburayyan WS, Seder N, Al-fawares O, Fararjeh A, Majali IS, Al-Hajaya Y. Characterization of Antibiofilm and Antimicrobial Effects of Trigona Stingless Bee Honey Compared to Stinging Bee Centaurea hyalolepis and Citrus Honeys. J Evid Based Integr Med 2024; 29:2515690X241271978. [PMID: 39118572 PMCID: PMC11311187 DOI: 10.1177/2515690x241271978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 05/15/2024] [Accepted: 06/26/2024] [Indexed: 08/10/2024] Open
Abstract
The antibiofilm and antimicrobial properties of tropical honey types including Malaysian stingless bee honey remain explicitly unexplored when compared with Apies honey. The antibiofilm and antimicrobial activities of the Malaysian Trigona honey were characterized with two stinging bee honey types (Centaurea hyalolepis and Citrus honeys) from Jordan. The antibiofilm and antimicrobial investigations were conducted on a set of seven microbial strains; five bacterial species of Pseudomonas aeruginosa ATCC 10145, Streptococcus pyogenes ATCC 19615, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Klebsiella pneumoniae ATCC 13883, and two fungal strains Candida albicans ATCC 10231 and Candida krusei ATCC 14243. The antimicrobial investigations revealed a broad spectrum activity for Trigona honey against Gram-positive, Gram-negative, and fungal strains over the two honey types. One-way ANOVA showed a significant difference (p < 0.001) in the zone of inhibition ranging from 9 to 25 mm and minimum inhibition activity (MIC) ranged from 9.4-29.6% (w/v) against the microbial strains. Moreover, the addition of honey to established biofilms has induced a degradation activity in the biofilm mass. Two-way ANOVA showed a significant biofilm degradation proportion (p < 0.001) ranging from 1.3% to 91.3% following treatment with Trigona honey and the other honey types in relevance to the concentration ranging from 10% to 50% (w/v). Moreover, the antibiofilm activity was highly consistent with MIC affecting bacterial growth inhibition. In conclusion, a robust antimicrobial and antibiofilm activity for Trigona stingless bee honey over the stinging bee Centaurea hyalolepis and Citrus honeys is noticed which endows the usage of Trigona honey in the antimicrobial industry.
Collapse
Affiliation(s)
- Walid Salem Aburayyan
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Nesrin Seder
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - O’la Al-fawares
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - AbdulFattah Fararjeh
- Department of Medical Laboratory Sciences, Faculty of Science, Al-Balqa Applied University, Al-Salt, Jordan
| | - Ibrahim S. Majali
- Department of Medical Laboratory Sciences, Mutah University, Karak, Jordan
| | - Yousef Al-Hajaya
- Department of Biological Sciences, Mutah University, Karak, Jordan
| |
Collapse
|
3
|
Silva Macêdo N, de Sousa Silveira Z, da Silva Sousa ÂE, Menezes Dantas D, Bispo Monteiro AL, Silva Dos Santos H, Bezerra da Cunha FA. Floral Visitation, Phytochemical and Biological Activities of Bioproducts from Tetragonisca angustula (Hymenoptera, Apidae, Meliponini): A Review. Chem Biodivers 2023; 20:e202301451. [PMID: 37985410 DOI: 10.1002/cbdv.202301451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Tetragonisca angustula (Latreille, 1811) is an indigenous neotropical stingless bee, popularly known as "Jataí", with a wide distribution in the Brazilian territory. T. angustula produces other derivatives such as propolis, geopropolis, fermented (saburá pollen), cerumen and resins, which are important in folk medicine. In this review, the objective was to gather research on the main plant species visited by T. angustula, as well as studies that verified the chemical composition and biological properties of T. angustula bioproducts. The bibliographic review was performed by searching the Scopus, Web of Science, ScienceDirect, and PubMed databases for publications from 2003 to February 2023. We found 78 studies that analyzed the interactions between T. angustula and floral species, with species from the botanical families Fabaceae, Asteraceae, Malvaceae, Bignoniaceae, Solanaceae, Myrtaceae and Lamiaceae being the most reported as the main food sources for this species. The presence of compounds belonging to the class of flavonoids, phenolic acids, terpenoids and alkaloids has been identified by studying the chemical composition of honey, propolis, geopropolis and fermented pollen (saburá) in 21 studies. The data collected in the literature emphasize that these T. angustula products have remarkable biological properties, especially their antibacterial and antioxidant activities.
Collapse
Affiliation(s)
- Nair Silva Macêdo
- Graduate Program in Biological Chemistry -, PPQB at the Regional University of Cariri - URCA, Crato, Ceará, Brazil
| | - Zildene de Sousa Silveira
- Graduate Program in Biological Sciences -, PPGCB of the Federal University of Pernambuco - UFPE, Recife, Pernambuco, Brazil
| | - Ângella Eduarda da Silva Sousa
- Semi-arid Bioprospecting Laboratory and Alternative Methods -, LABSEMA of the Regional University of Cariri - URCA, Crato, Ceará, Brazil
| | - Débora Menezes Dantas
- Graduate Program in Biological Chemistry -, PPQB at the Regional University of Cariri - URCA, Crato, Ceará, Brazil
| | - Amanda Lins Bispo Monteiro
- Graduate Program in Animal Bioscience, Federal Rural University of Pernambuco - UFRPE, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
4
|
Cabezas-Mera FS, Atiencia-Carrera MB, Villacrés-Granda I, Proaño AA, Debut A, Vizuete K, Herrero-Bayo L, Gonzalez-Paramás AM, Giampieri F, Abreu-Naranjo R, Tejera E, Álvarez-Suarez JM, Machado A. Evaluation of the polyphenolic profile of native Ecuadorian stingless bee honeys ( Tribe: Meliponini) and their antibiofilm activity on susceptible and multidrug-resistant pathogens: An exploratory analysis. Curr Res Food Sci 2023; 7:100543. [PMID: 37455680 PMCID: PMC10344713 DOI: 10.1016/j.crfs.2023.100543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/08/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023] Open
Abstract
Biofilms are associated with infections that are resistant to conventional therapies, contributing to the antimicrobial resistance crisis. The need for alternative approaches against biofilms is well-known. Although natural products like stingless bee honeys (tribe: Meliponini) constitute an alternative treatment, much is still unknown. Our main goal was to evaluate the antibiofilm activity of stingless bee honey samples against multidrug-resistant (MDR) pathogens through biomass assays, fluorescence (cell count and viability), and scanning electron (structural composition) microscopy. We analyzed thirty-five honey samples at 15% (v/v) produced by ten different stingless bee species (Cephalotrigona sp., Melipona sp., M. cramptoni, M. fuscopilosa, M. grandis, M. indecisa, M. mimetica, M. nigrifacies, Scaptotrigona problanca, and Tetragonisca angustula) from five provinces of Ecuador (Tungurahua, Pastaza, El Oro, Los Ríos, and Loja) against 24-h biofilms of Staphylococcus aureus, Klebsiella pneumoniae, Candida albicans, and Candida tropicalis. The present honey set belonged to our previous study, where the samples were collected in 2018-2019 and their physicochemical parameters, chemical composition, mineral elements, and minimal inhibitory concentration (MIC) were screened. However, the polyphenolic profile and their antibiofilm activity on susceptible and multidrug-resistant pathogens were still unknown. According to polyphenolic profile of the honey samples, significant differences were observed according to their geographical origin in terms of the qualitative profiles. The five best honey samples (OR24.1, LR34, LO40, LO48, and LO53) belonging to S. problanca, Melipona sp., and M. indecisa were selected for further analysis due to their high biomass reduction values, identification of the stingless bee specimens, and previously reported physicochemical parameters. This subset of honey samples showed a range of 63-80% biofilm inhibition through biomass assays. Fluorescence microscopy (FM) analysis evidenced statistical log reduction in the cell count of honey-treated samples in all pathogens (P <0.05), except for S. aureus ATCC 25923. Concerning cell viability, C. tropicalis, K. pneumoniae ATCC 33495, and K. pneumoniae KPC significantly decreased (P <0.01) by 21.67, 25.69, and 45.62%, respectively. Finally, scanning electron microscopy (SEM) analysis demonstrated structural biofilm disruption through cell morphological parameters (such as area, size, and form). In relation to their polyphenolic profile, medioresinol was only found in the honey of Loja, while scopoletin, kaempferol, and quercetin were only identified in honey of Los Rios, and dihydrocaffeic and dihydroxyphenylacetic acids were only detected in honey of El Oro. All the five honey samples showed dihydrocoumaroylhexose, luteolin, and kaempferol rutinoside. To the authors' best knowledge, this is the first study to analyze stingless bees honey-treated biofilms of susceptible and/or MDR strains of S. aureus, K. pneumoniae, and Candida species.
Collapse
Affiliation(s)
- Fausto Sebastián Cabezas-Mera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - María Belén Atiencia-Carrera
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - Irina Villacrés-Granda
- Programa de Doctorado Interuniversitario en Ciencias de la Salud, Universidad de Sevilla, Sevilla, Spain
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - Adrian Alexander Proaño
- Laboratorios de Investigación, Universidad de Las Américas (UDLA), Vía a Nayón, Quito, 170124, Ecuador
| | - Alexis Debut
- Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Karla Vizuete
- Centro de Nanociencia y Nanotecnología, Universidad de Las Fuerzas Armadas ESPE, Sangolquí, 171103, Ecuador
| | - Lorena Herrero-Bayo
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Ana M. Gonzalez-Paramás
- Grupo de Investigación en Polifenoles (GIP-USAL), Universidad de Salamanca, Campus Miguel de Unamuno, 37008, Salamanca, Spain
| | - Francesca Giampieri
- Research Group on Food, Nutritional Biochemistry and Health, Universidad Europea del Atlántico, C. Isabel Torres, 21, 39011, Santander, Cantabria, Spain
| | - Reinier Abreu-Naranjo
- Departamento de Ciencias de La Vida, Universidad Estatal Amazónica, Puyo, 160150, Ecuador
| | - Eduardo Tejera
- Facultad de Ingeniería y Ciencias Agropecuarias Aplicadas, Grupo de Bioquimioinformática, Universidad de Las Américas (UDLA), De Los Colimes esq, Quito, 170513, Quito, Ecuador
| | - José M. Álvarez-Suarez
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias e Ingenierías, Departamento de Ingeniería en Alimentos, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| | - António Machado
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales COCIBA, Instituto de Microbiología, Laboratorio de Bacteriología, Calle Diego de Robles y Pampite, Quito, 170901, Ecuador
| |
Collapse
|
5
|
Farkas Á, Balázs VL, Kõszegi T, Csepregi R, Kerekes E, Horváth G, Szabó P, Gaál K, Kocsis M. Antibacterial and Biofilm Degradation Effects of Hungarian Honeys Linked With Botanical Origin, Antioxidant Capacity and Mineral Content. Front Nutr 2022; 9:953470. [PMID: 35911104 PMCID: PMC9326441 DOI: 10.3389/fnut.2022.953470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/21/2022] [Indexed: 11/22/2022] Open
Abstract
The aim of the study was to assess the impact of four unifloral honeys on the food-borne pathogens Pseudomonas aeruginosa and Staphylococcus aureus, by analyzing the honeys’ antibacterial and biofilm degradation effects, as well as their antioxidant activity and element content. Linden and milkweed honeys represented light colored honeys, while goldenrod and chestnut honeys the darker ones. The botanical origin of the honeys and the relative frequency of their pollen types were established with melissopalynological analysis. The antioxidant capacities were calculated by two single electron transfer based methods (TRC – Total Reducing Capacity and TEAC – Trolox Equivalent Antioxidant Capacity) and a hydrogen atom transfer based assay (ORAC – Oxygen Radical Absorbance). The amount of four main macro- and two microelements was quantified. The antibacterial activity was determined by minimum inhibitory concentration (MIC) and membrane degradation assays. Furthermore, the biofilm degradation power of the samples was studied as well. The light colored linden honey with the lowest TRC and TEAC, but with the highest ORAC antioxidant activity and high element content showed the best antibacterial and biofilm degradation effects. Meanwhile, the dark colored chestnut honey with significantly higher single electron transfer based antioxidant capacities, with high element content, but lower ORAC showed significantly higher MIC and lower membrane degradation activity than linden honey. In case of biofilm degradation, both honey types gave similarly high inhibitory effect. Goldenrod honey was similarly effective regarding its MIC properties like chestnut honey, but had significantly lower antioxidant potential and ability to disrupt bacterial membranes and biofilms. Milkweed honey was the honey type with the lowest bioactivity and element content. The honeys, unequivocally characterized by their antioxidant characters and element content, displayed different antibacterial and biofilm degradation effects. In addition, some honey traits were found to be good predictors of the antimicrobial potential of honeys: ORAC assay showed correlation with the MIC values of both bacteria, and strict correlation was found between the mineral content and the antibiofilm activity of the studied honeys. Our studies indicate that unifloral honeys, such as linden and chestnut honeys, are plant-derived products with great potential as antimicrobial agents in food preservation, exhibiting remarkable antibacterial activity against food-borne pathogens.
Collapse
Affiliation(s)
- Ágnes Farkas
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | | | - Tamás Kõszegi
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Rita Csepregi
- Department of Laboratory Medicine, Medical School, University of Pécs, Pécs, Hungary
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Erika Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Péter Szabó
- János Szentágothai Research Center, University of Pécs, Pécs, Hungary
- Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Krisztián Gaál
- Research Institute for Viticulture and Enology, University of Pécs, Pécs, Hungary
| | - Marianna Kocsis
- Department of Plant Biology, Institute of Biology, University of Pécs, Pécs, Hungary
- *Correspondence: Marianna Kocsis,
| |
Collapse
|
6
|
Honey antibacterial activity: A neglected aspect of honey quality assurance as functional food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Mariutti LRB, Rebelo KS, Bisconsin-Junior A, de Morais JS, Magnani M, Maldonade IR, Madeira NR, Tiengo A, Maróstica MR, Cazarin CBB. The use of alternative food sources to improve health and guarantee access and food intake. Food Res Int 2021; 149:110709. [PMID: 34600699 DOI: 10.1016/j.foodres.2021.110709] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/03/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022]
Abstract
To feed and provide Food Security to all people in the world is a big challenge to be achieved with the 2030 Agenda. Undernutrition and obesity are to the opposite of a healthy nutritional status. Both conditions are associated with unbalanced nutrition, absence of food or excess of non-nutritive foods intake. These two nutritional conditions associated with food production are closely related to some goals highlighted by the United Nations in the 2030 Agenda to achieve sustainable world development. In this context, the search for alternative foods whose sustainable production and high nutritional quality guarantee regular access to food for the population must be encouraged. Alternative foods can contribute to Food Security in many ways as they contribute to the local economy and income generation. Popularizing and demystifying the uses of unconventional food plants, ancestral grains, flowers, meliponiculture products, and edible insects as sources of nutrients and non-nutrients is another challenge. Herein, we present an overview of alternative foods - some of them cultivated mostly in Brazil - that can be explored as sources of nutrients to fight hunger and malnutrition, improve food production and the economic growth of nations.
Collapse
Affiliation(s)
| | | | - Antonio Bisconsin-Junior
- School of Food Engineering, University of Campinas, Campinas, SP, Brazil; Federal Institute of Rondônia, Ariquemes/RO, Brazil
| | - Janne Santos de Morais
- Department of Food Engineering Centro de Tecnologia, Universidade Federal da Paraíba, Paraíba, Brazil
| | - Marciane Magnani
- Department of Food Engineering Centro de Tecnologia, Universidade Federal da Paraíba, Paraíba, Brazil
| | | | - Nuno Rodrigo Madeira
- Laboratory of Food Science and Techonology, Embrapa Hortaliças, Distrito Federal, Brazil
| | - Andrea Tiengo
- Universidade do Vale do Sapucaí, Pouso Alegre, MG, Brazil
| | | | | |
Collapse
|
8
|
Robledo-Márquez K, Ramírez V, González-Córdova AF, Ramírez-Rodríguez Y, García-Ortega L, Trujillo J. Research opportunities: Traditional fermented beverages in Mexico. Cultural, microbiological, chemical, and functional aspects. Food Res Int 2021; 147:110482. [PMID: 34399478 DOI: 10.1016/j.foodres.2021.110482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/13/2021] [Accepted: 05/23/2021] [Indexed: 12/19/2022]
Abstract
In Mexico, close to 200 fermented products have been described, of which, approximately 20 are beverages. They were obtained through rustic and ancestral fermentation methods by different indigenous Mexican communities; most of them were used in ceremonies, agricultural work, and other occasions. For their elaboration, different substrates obtained from plants are used, where uncontrolled and low-scale spontaneous anaerobic fermentation occurs. In Mexico, some of these products are considered as nutritional sources and functional beverages; the study of those products has revealed the presence of multiple compounds of biological importance. Additionally, elder generations attribute healing properties against diverse illnesses to these beverages. The aim of this review is to highlight the available information on twelve traditional Mexican fermented beverages, their traditional uses, and their fermentation processes along with toxicological, chemical, nutritional, and functional studies as seen from different areas of investigation. In the literature, pulque, cocoa, and pozol were the beverages with the greatest amount of described health properties; sendechó and guarapo were less characterized. Polyphenols, gallic and ferulic acid, anthocyanins and saponins were the most abundant molecules in all beverages. Finally, it is important to continue this research in order to determine the microorganisms that are involved in the fermentation process, as well as the organoleptic and beneficial properties they lend to the traditional Mexican fermented beverages.
Collapse
Affiliation(s)
- K Robledo-Márquez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí 78216, Mexico
| | - V Ramírez
- Departamento de Cirugía Experimental, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Tlalpan, Ciudad de México 14080, Mexico
| | - A F González-Córdova
- Laboratorio de Calidad, Autenticidad y Trazabilidad de los Alimentos y de Química y Biotecnología de Productos Lácteos, Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), La Victoria, Hermosillo, Sonora 83304, Mexico
| | - Y Ramírez-Rodríguez
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí 78216, Mexico; Consejo Nacional de Ciencia y Tecnología-Instituto Potosino de Investigación Científica y Tecnológica-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CONACYT-CIIDZA-IPICYT), San Luis Potosí 78216, Mexico
| | - L García-Ortega
- Departamento de Ingeniería Genética. Centro de Investigación y Estudios Avanzados de IPN (Cinvestav), Irapuato, Guanajuato 36824, Mexico
| | - J Trujillo
- Consejo Nacional de Ciencia y Tecnología-Instituto Potosino de Investigación Científica y Tecnológica-Consorcio de Investigación, Innovación y Desarrollo para las Zonas Áridas (CONACYT-CIIDZA-IPICYT), San Luis Potosí 78216, Mexico.
| |
Collapse
|
9
|
Antioxidant-Based Medicinal Properties of Stingless Bee Products: Recent Progress and Future Directions. Biomolecules 2020; 10:biom10060923. [PMID: 32570769 PMCID: PMC7356725 DOI: 10.3390/biom10060923] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 12/27/2022] Open
Abstract
Stingless bees are a type of honey producers that commonly live in tropical countries. Their use for honey is being abandoned due to its limited production. However, the recent improvements in stingless bee honey production, particularly in South East Asia, have brought stingless bee products back into the picture. Although there are many stingless bee species that produce a wide spread of products, known since old eras in traditional medicine, the modern medical community is still missing more investigational studies on stingless bee products. Whereas comprehensive studies in the current era attest to the biological and medicinal properties of honeybee (Apis mellifera) products, the properties of stingless bee products are less known. This review highlights for the first time the medicinal benefits of stingless bee products (honey, propolis, pollen and cerumen), recent investigations and promising future directions. This review emphasizes the potential antioxidant properties of these products that in turn play a vital role in preventing and treating diseases associated with oxidative stress, microbial infections and inflammatory disorders. Summarizing all these data and insights in one manuscript may increase the commercial value of stingless bee products as a food ingredient. This review will also highlight the utility of stingless bee products in the context of medicinal and therapeutic properties, some of which are yet to be discovered.
Collapse
|
10
|
Schwarzer S, James GA, Goeres D, Bjarnsholt T, Vickery K, Percival SL, Stoodley P, Schultz G, Jensen SO, Malone M. The efficacy of topical agents used in wounds for managing chronic biofilm infections: A systematic review. J Infect 2019; 80:261-270. [PMID: 31899281 DOI: 10.1016/j.jinf.2019.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Clinicians have increasingly adopted the widespread use of topical agents to manage chronic wound infections, despite limited data on their effectiveness in vivo. This study sought to evaluate the evidence for commonly employed topical agents used in wounds for the purpose of treating chronic infections caused by biofilm. METHOD We included in vitro, animal and human in vivo studies where topical agents were tested for their efficacy against biofilms, for use in wound care. For human studies, we only included those which utilised appropriate identification techniques for visualising and confirming the presence of biofilms. RESULT A total of 640 articles were identified, with 43 included after meeting eligibility. In vitro testing accounted for 90% (n = 39) of all included studies, five studies using animal models and three human in vivo studies. Sixteen different laboratory models were utilised, with the most frequent being the minimum biofilm eradication concentration (MBEC™) / well plate assay (38%, n = 15 of 39). A total of 44 commercially available topical agents were grouped into twelve categories with the most commonly tested agents being silver, iodine and polyhexamethylene biguanide (PHMB). In vitro results on efficacy demonstrated iodine as having the highest mean log10 reductions of all agents (4.81, ±3.14). CONCLUSION There is large disparity in the translation of laboratory studies to researchers undertaking human trials relating to the effectiveness of commercially available topical agents. There is insufficient human in vivo evidence to definitively recommend any commercially available topical agent over another for the treatment of chronic wound biofilms. The heterogeneity identified between study designs (in vitro to in vivo) further limits the generalisability of results.
Collapse
Affiliation(s)
- S Schwarzer
- South West Sydney Limb Preservation and Wound Research, South West Sydney Local Health District, Sydney, Australia.
| | - G A James
- Centre for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - D Goeres
- Centre for Biofilm Engineering, Montana State University, Bozeman, MT, United States
| | - T Bjarnsholt
- Department of Immunology and Microbiology, Costerton Biofilm Centre, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - K Vickery
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, Sydney Australia
| | - S L Percival
- 5D Health Protection Group Ltd, Centre of Excellence in Biofilm Science (CEBS), Liverpool Bio-Innovation Hub, Liverpool UK
| | - P Stoodley
- Departments of Microbial Infection and Immunity, and Orthopaedics, Ohio State University, Columbus, OH, United States
| | - G Schultz
- Department of Obstetrics & Gynecology, Institute for Wound Research, University of Florida, Gainesville, FL, United States
| | - S O Jensen
- South West Sydney Limb Preservation and Wound Research, South West Sydney Local Health District, Sydney, Australia; Infectious Diseases and Microbiology, School of Medicine, Ingham Institute for Applied Medical Research, Western Sydney University, United States
| | - M Malone
- South West Sydney Limb Preservation and Wound Research, South West Sydney Local Health District, Sydney, Australia; Infectious Diseases and Microbiology, School of Medicine, Ingham Institute for Applied Medical Research, Western Sydney University, United States
| |
Collapse
|
11
|
Sharahi JY, Azimi T, Shariati A, Safari H, Tehrani MK, Hashemi A. Advanced strategies for combating bacterial biofilms. J Cell Physiol 2019; 234:14689-14708. [PMID: 30693517 DOI: 10.1002/jcp.28225] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 01/16/2019] [Indexed: 01/24/2023]
Abstract
Biofilms are communities of microorganisms that are formed on and attached to living or nonliving surfaces and are surrounded by an extracellular polymeric material. Biofilm formation enjoys several advantages over the pathogens in the colonization process of medical devices and patients' organs. Unlike planktonic cells, biofilms have high intrinsic resistance to antibiotics and sanitizers, and overcoming them is a significant problematic challenge in the medical and food industries. There are no approved treatments to specifically target biofilms. Thus, it is required to study and present innovative and effective methods to combat a bacterial biofilm. In this review, several strategies have been discussed for combating bacterial biofilms to improve healthcare, food safety, and industrial process.
Collapse
Affiliation(s)
- Javad Yasbolaghi Sharahi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Melika Khanzadeh Tehrani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Cambronero-Heinrichs JC, Matarrita-Carranza B, Murillo-Cruz C, Araya-Valverde E, Chavarría M, Pinto-Tomás AA. Phylogenetic analyses of antibiotic-producing Streptomyces sp. isolates obtained from the stingless-bee Tetragonisca angustula (Apidae: Meliponini). Microbiology (Reading) 2019; 165:292-301. [DOI: 10.1099/mic.0.000754] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Juan Carlos Cambronero-Heinrichs
- 1Centro de Investigación en Estructuras Microscópicas (CIEMIC), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- 2Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | | | - Catalina Murillo-Cruz
- 1Centro de Investigación en Estructuras Microscópicas (CIEMIC), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- 4Centro de Investigación en Biología Molecular y Celular (CIBCM), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- 5Escuela de Medicina, Departamento de Bioquímica, Universidad de Costa Rica, 11501-2060 SanJosé, Costa Rica
| | - Emanuel Araya-Valverde
- 6Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
| | - Max Chavarría
- 6Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, 1174-1200 San José, Costa Rica
- 7Escuela de Química & Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| | - Adrián A. Pinto-Tomás
- 1Centro de Investigación en Estructuras Microscópicas (CIEMIC), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
- 5Escuela de Medicina, Departamento de Bioquímica, Universidad de Costa Rica, 11501-2060 SanJosé, Costa Rica
- 4Centro de Investigación en Biología Molecular y Celular (CIBCM), Universidad de Costa Rica, 11501-2060 San José, Costa Rica
| |
Collapse
|
13
|
Baars EW, Zoen EBV, Breitkreuz T, Martin D, Matthes H, von Schoen-Angerer T, Soldner G, Vagedes J, van Wietmarschen H, Patijn O, Willcox M, von Flotow P, Teut M, von Ammon K, Thangavelu M, Wolf U, Hummelsberger J, Nicolai T, Hartemann P, Szőke H, McIntyre M, van der Werf ET, Huber R. The Contribution of Complementary and Alternative Medicine to Reduce Antibiotic Use: A Narrative Review of Health Concepts, Prevention, and Treatment Strategies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2019; 2019:5365608. [PMID: 30854009 PMCID: PMC6378062 DOI: 10.1155/2019/5365608] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 12/23/2018] [Indexed: 12/18/2022]
Abstract
AIM The aim of this narrative review was to explore the potential contributions of CAM to reduce antibiotic use. METHODS We searched PubMed, Embase, and Cochrane Database of Systematic Reviews with a specific, limited set of search terms and collected input from a group of expert CAM researchers to answer the question: What is known about the contribution of CAM health and health promotion concepts, infection prevention, and infection treatment strategies to reduce antibiotic use? Results. The worldview-related CAM health concepts enable health promotion oriented infection prevention and treatment aimed at strengthening or supporting the self-regulating ability of the human organism to cope with diseases. There is some evidence that the CAM concepts of health (promotion) are in agreement with current conceptualization of health and that doctors who practice both CAM and conventional medicine prescribe less antibiotics, although selection bias of the presented studies cannot be ruled out. There is some evidence that prevention and some treatment strategies are effective and safe. Many CAM treatment strategies are promising but overall lack high quality evidence. CONCLUSIONS CAM prevention and treatment strategies may contribute to reducing antibiotic use, but more rigorous research is necessary to provide high quality evidence of (cost-)effectiveness.
Collapse
Affiliation(s)
- Erik W. Baars
- Louis Bolk Institute, Kosterijland 3-5, 3981 AJ Bunnik, Netherlands
- University of Applied Sciences Leiden, Faculty of Healthcare, Zernikedreef 11, 2333 CK Leiden, Netherlands
| | - Eefje Belt-van Zoen
- University of Applied Sciences Leiden, Faculty of Healthcare, Zernikedreef 11, 2333 CK Leiden, Netherlands
| | | | - David Martin
- University of Witten/Herdecke, Alfred-Herrhausen-Straße 50, 58448 Witten, Germany
| | - Harald Matthes
- Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics, Luisenstr. 57, 10117 Berlin, Germany
| | | | - Georg Soldner
- Medical section of the Goetheanum, Rüttiweg 45 4143 Dornach, Switzerland
| | - Jan Vagedes
- ARCIM institute, Im Haberschlai 7, 70794 Filderstadt, Germany
| | | | - Olga Patijn
- Louis Bolk Institute, Kosterijland 3-5, 3981 AJ Bunnik, Netherlands
| | - Merlin Willcox
- University of Southampton, University Road, Southampton SO17 1BJ, UK
| | - Paschen von Flotow
- Sustainable Business Institute, Zehnthofstr. 1, 65375 Oestrich-Winkel, Germany
| | - Michael Teut
- Charité Universitätsmedizin Berlin, Institute for Social Medicine, Epidemiology and Health Economics, Luisenstr. 57, 10117 Berlin, Germany
| | - Klaus von Ammon
- University of Bern, Freiburgstrasse 46, 3010 Bern, Switzerland
| | - Madan Thangavelu
- European Ayurveda Association e.V., In den Forstwiesen 27, D- 56745 Bell, Germany
| | - Ursula Wolf
- University of Bern, Freiburgstrasse 46, 3010 Bern, Switzerland
| | | | - Ton Nicolai
- Eurocam, Rue du Trône 194, 1050 Brussels, Belgium
| | - Philippe Hartemann
- University of Lorraine, School of Medicine, 7 avenue de la Forêt de Haye, 54500 Vandoeuvre-Nancy, France
| | - Henrik Szőke
- University of Pécs, 7622 Pécs, Vasvári Pál str. 4., Hungary
| | - Michael McIntyre
- Midsummer Clinic, Church Westcote, Chipping Norton, Oxon, Ox7 6SF, UK
| | - Esther T. van der Werf
- Taylor's University, School of Medicine, 1, Jalan Taylor's, 47500 Subang Jaya, Selangor D.E., Malaysia
- University of Bristol, Bristol Medical School, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - Roman Huber
- University of Freiburg, Faculty of Medicine, Breisacher Str. 115b, 79106 Freiburg, Germany
| |
Collapse
|