1
|
Marmitt DJ, Vettorazzi G, Bortoluzzi L, Alves C, Silva J, Pinteus S, Martins A, Gaspar H, Pedrosa R, da Silva J, Henriques JAP, Laufer S, Goettert MI. Wound healing potential and anti-inflammatory action of extracts and compounds of Myrciaria plinioides D. Legrand leaves. Inflammopharmacology 2024:10.1007/s10787-024-01547-3. [PMID: 39133352 DOI: 10.1007/s10787-024-01547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Wounds or chronic injuries are associated with high medical costs so, develop healing-oriented drugs is a challenge for modern medicine. The identification of new therapeutic alternatives focuses on the use of natural products. Therefore, the main goal of this study was to evaluate the healing potential and anti-inflammatory mechanism of action of extracts and the main compounds derived from Myrciaria plinioides D. Legrand leaves. The antimicrobial activity of leaf extracts was analyzed. Cell viability, cytotoxicity and genotoxicity of plant extracts and compounds were also assessed. Release of pro- and anti-inflammatory cytokines and TGF-β by ELISA, and protein expression was determined by Western Blot. The cell migration and cell proliferation of ethanol and aqueous leaf extracts and p-coumaric acid, quercetin and caffeic acid compounds were also evaluated. The aqueous extract exhibited antibacterial activity and, after determining the safety concentrations in three assays, we showed that this extract induced p38-α MAPK phosphorylation and the same extract and the p-coumaric acid decreased COX-2 and caspase-3, -8 expression, as well as reduced the TNF-α release and stimulated the IL-10 in RAW 264.7 cells. In L929 cells, the extract and p-coumaric acid induced TGF-β release, besides increasing the process of cell migration and proliferation. These results suggested that the healing properties of Myrciaria plinioides aqueous extract can be associated to the presence of phenolic compounds, especially p-coumaric acid, and/or glycosylated metabolites.
Collapse
Affiliation(s)
- Diorge Jônatas Marmitt
- Cell Culture Laboratory, Post-Graduation Program in Biotechnology, Taquari Valley University-Univates, Lajeado, RS, Brazil.
| | - Gabriela Vettorazzi
- Cell Culture Laboratory, Post-Graduation Program in Biotechnology, Taquari Valley University-Univates, Lajeado, RS, Brazil
| | - Luísa Bortoluzzi
- Cell Culture Laboratory, Post-Graduation Program in Biotechnology, Taquari Valley University-Univates, Lajeado, RS, Brazil
| | - Celso Alves
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
| | - Joana Silva
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
| | - Susete Pinteus
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
| | - Alice Martins
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
| | - Helena Gaspar
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
- BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, C8, 1749-016, Lisbon, Portugal
| | - Rui Pedrosa
- MARE-Marine and Environmental Sciences Centre, ESTM, Polytechnic University of Leiria, 2520-641, Peniche, Portugal
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, Lutheran University of Brazil (ULBRA) and LaSalle University (UniLaSalle), Canoas, RS, Brazil
| | - João Antonio Pêgas Henriques
- Center for Exact Sciences and Technology, Institute of Biotechnology, University of Caxias do Sul-UCS, Caxias Do Sul, RS, Brazil
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of Tübingen, Tübingen, Germany
| | - Márcia Inês Goettert
- Cell Culture Laboratory, Post-Graduation Program in Biotechnology, Taquari Valley University-Univates, Lajeado, RS, Brazil
| |
Collapse
|
2
|
Bauhinia forficata Link Infusions: Chemical and Bioactivity of Volatile and Non-Volatile Fractions. Molecules 2022; 27:molecules27175415. [PMID: 36080183 PMCID: PMC9457595 DOI: 10.3390/molecules27175415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to evaluate Bauhinia forficata infusions prepared using samples available in Rio de Janeiro, Brazil. As such, infusions at 5% (w/v) of different brands and batches commercialized in the city (CS1, CS2, CS3, and CS4) and samples of plant material botanically identified (BS) were evaluated to determine their total phenolic and flavonoid contents (TPC and TFC), antioxidant capacity (ABTS•+, DPPH•, and FRAP assays), phytochemical profile, volatile compounds, and inhibitory effects against the α-amylase enzyme. The results showed that infusions prepared using BS samples had lower TPC, TFC and antioxidant potential than the commercial samples (p < 0.05). The batch averages presented high standard deviations mainly for the commercial samples, corroborating sample heterogeneity. Sample volatile fractions were mainly composed of terpenes (40 compounds identified). In the non-volatile fraction, 20 compounds were identified, with emphasis on the CS3 sample, which comprised most of the compounds, mainly flavonoid derivatives. PCA analysis demonstrated more chemical diversity in non-volatile than volatile compounds. The samples also inhibited the α-amylase enzyme (IC50 value: 0.235−0.801 mg RE/mL). Despite the differences observed in this work, B. forficata is recognized as a source of bioactive compounds that can increase the intake of antioxidant compounds by the population.
Collapse
|
3
|
Sousa IMDO, Rivera GA, Pinto D, Queiroz NDCA, Bastos VIC, Braga LEO, Palmeira JD, Amaral H, Ferreira HMN, Oliveira HCC, Gonçalves FJM, Ruiz ALTG, Ibañez E, Oliveira BPP, Foglio MA. The role of spray-drying atmosphere on fridericia chica (bonpl.) L.G. Lohmann standardized extract production for wound healing activity. Nat Prod Res 2021; 36:4799-4803. [PMID: 34875942 DOI: 10.1080/14786419.2021.2012773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fridericia chica (Bonpl.) L.G. Lohmann (synonym Arrabidaea chica Verlot) is widely used in Brazilian folk medicine. Considering overcoming pitfalls of scaling up production of plant extracts, herein the effects of N2 atmosphere for extract spray-drying process is reported. Samples were monitored by in vitro antioxidant activity and microbiological evaluation. The drying atmosphere influenced 3-deoxyanthocyanines content when using air as atomizing gas, decreasing carajurin (37.5%) content with concomitant increase in luteolin yield (24.1%). Both drying processes preserved the pharmacological activity. In the cell migration test with HaCaT cells, the extract dried under air flow (5 μg/mL) promoted wound closure by 78% (12 hours) whereas the extract dried using N2 flow promoted 49% (12 hours), with 98% closure (12 hours) for the positive control. The antimicrobial evaluation for Staphylococcus aureus did not differ within drying atmospheres, with MIC (minimum inhibitory concentration) at 0.39 mg/mL. Therefore, the drying process reported herein did not interfere with the biological activity's outcome.
Collapse
Affiliation(s)
- Ilza Maria de Oliveira Sousa
- Postgraduate Program in Medical Sciences - Faculty of Medical Science - FCM; Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA) at Campinas State University (UNICAMP), and Faculty of Pharmaceutical Science, UNICAMP, Campinas, SP, Brazil
| | | | - Diana Pinto
- Department of Physiological Science Dental School, UNICAMP, Piracicaba-São Paulo, Brazil
| | - Nubia de Cássia Almeida Queiroz
- Postgraduate Program in Medical Sciences - Faculty of Medical Science - FCM; Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA) at Campinas State University (UNICAMP), and Faculty of Pharmaceutical Science, UNICAMP, Campinas, SP, Brazil
| | | | - Lucia Elaine O Braga
- Postgraduate Program in Medical Sciences - Faculty of Medical Science - FCM; Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA) at Campinas State University (UNICAMP), and Faculty of Pharmaceutical Science, UNICAMP, Campinas, SP, Brazil
| | | | - Helena Amaral
- Department of Biology & CESAM, University of Aveiro, Aveiro, Portugal
| | | | | | | | - Ana Lucia T G Ruiz
- UCIBIO/REQUIMTE, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira
| | - Elena Ibañez
- LAQV/REQUIMTE, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira
| | - Beatriz P P Oliveira
- Department of Physiological Science Dental School, UNICAMP, Piracicaba-São Paulo, Brazil
| | - Mary A Foglio
- Postgraduate Program in Medical Sciences - Faculty of Medical Science - FCM; Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA) at Campinas State University (UNICAMP), and Faculty of Pharmaceutical Science, UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
4
|
Marmitt DJ, Bitencourt S, da Silva GR, Rempel C, Goettert MI. Traditional plants with antioxidant properties in clinical trials-A systematic review. Phytother Res 2021; 35:5647-5667. [PMID: 34165846 DOI: 10.1002/ptr.7202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/20/2021] [Accepted: 06/08/2021] [Indexed: 01/08/2023]
Abstract
There is a trend toward the use of natural substances present in plants and vegetables. In general, foods rich in antioxidants are complex matrices; therefore, understanding its absorption effects is extremely relevant to know its bioactive potential. Thus, this systematic review focused on clinical trials involving plants (or compounds) registered on the National List of Medicinal Plants of Interest to the Unified Health System (RENISUS) with antioxidant properties. Following the reporting guidelines of Preferred Reporting Items for Systematic Reviews and Meta-Analyzes studies of interest indexed in the PubMed and ClinicalTrials.gov databases were analyzed. Of the 59 clinical trials found, Allium sativum and Curcuma longa are the plant species with the highest percentage of clinical research. Prevention/attenuation of oxidative stress was one of the main antioxidant mechanisms indicated in the studies. The most tested compounds of the RENISUS plants in clinical trials were curcumin and soy isoflavone. In this review, we selected studies in advanced stages that highlight plants' value in optimizing antioxidant status; however, even with high-quality studies, it is not prudent to overstate the clinical efficacy of these plants.
Collapse
Affiliation(s)
- Diorge Jônatas Marmitt
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | - Shanna Bitencourt
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | | | - Claudete Rempel
- Programa de Pós-graduação em Ambiente e Desenvolvimento/Programa de Pós-graduação em Sistemas Ambientais Sustentáveis, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| | - Márcia Inês Goettert
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, RS, Brazil
| |
Collapse
|
5
|
Bueno G, Chavez Rico SL, Périco LL, Ohara R, Rodrigues VP, Emílio-Silva MT, Assunção R, Machado da Rocha LR, Nunes DS, Besten MA, Heiden G, Lima Camargo AC, Justulin LA, Hiruma-Lima CA. The essential oil from Baccharis trimera (Less.) DC improves gastric ulcer healing in rats through modulation of VEGF and MMP-2 activity. JOURNAL OF ETHNOPHARMACOLOGY 2021; 271:113832. [PMID: 33460758 DOI: 10.1016/j.jep.2021.113832] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/12/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Baccharis trimera (Less.) DC known as "carqueja" in Brazil has been acknowledged as a medicinal plant in folk medicine for the treatment of stomach aches and gastrointestinal disorders. AIM OF THE STUDY The present study aimed to evaluate the gastroprotective and healing effects of essential oil from B. trimera (EOBT) against gastric ulcer lesions caused by absolute ethanol and acetic acid, respectively, and to identify the mechanism of action of this essential oil in male Wistar rats. MATERIALS AND METHODS The plant material used to obtain EOBT was collected in the southern region of Brazil and was analyzed by chromatography-mass spectrometry (GCMS) demonstrate its characteristic chemical composition, with carquejyl acetate as its main component. Different doses of EOBT (50, 100, and 200 mg/kg) were administered orally in male Wistar rats as an acute treatment against absolute ethanol-induced gastric lesions. The gastric healing effect of EOBT (100 mg/kg) was evaluated once a day after 7, 10, and 14 days of treatment. After treatment, the stomachs of rats from all groups were collected to measure the lesion area (mm2), the activity of myeloperoxidase (MPO), and the relative expression of caspases -3, -8, -9, cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), and epidermal growth factor (EGF). The zymography method was used to elucidate the activity of matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in the healing action of EOBT. We also analyzed toxicological parameters (body weight evolution and biochemical parameters) that could result after treatment with this essential oil for 14 days. RESULTS Pretreatment with EOBT (100 and 200 mg/kg) significantly decreased the severity of gastric damage induced by absolute ethanol and decreased MPO activity in gastric tissue. After 10 and 14 days of treatment with EOBT (100 mg/kg) once a day, the lesion area was significantly reduced by 61% and 65.5%, respectively, compared to the negative control group. The gastric healing effect of EOBT was followed by a decrease in the expression of COX-1 compared to that in the negative control group. Notably, treatment with EOBT for 14 days increased the expression of VEGF compared to that using an anti-ulcer drug (lansoprazole). Additionally, analyses of MMP-2 and MMP-9 activities in the gastric mucosa confirmed the accelerated gastric healing effect of EOBT, with a significant decrease in the activity of pro-MMP-2. No sign of toxicity was observed after treatment with EOBT for 14 consecutive days. CONCLUSION These findings indicated that EOBT was effective in preventing and accelerating ulcer healing by decreasing MPO activity, increasing VEGF expression, and decreasing MMP-2 activity. These actions collectively contribute to the rapid recovery of gastric mucosa following treatment with EOBT, without any observed toxicity.
Collapse
Affiliation(s)
- Gabriela Bueno
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, CEP, 18618-689, Botucatu, São Paulo, Brazil
| | - Stefanni Liliane Chavez Rico
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, CEP, 18618-689, Botucatu, São Paulo, Brazil
| | - Larissa Lucena Périco
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Rie Ohara
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, CEP, 18618-689, Botucatu, São Paulo, Brazil
| | - Vinicius Peixoto Rodrigues
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, CEP, 18618-689, Botucatu, São Paulo, Brazil
| | - Maycon Tavares Emílio-Silva
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, CEP, 18618-689, Botucatu, São Paulo, Brazil
| | - Renata Assunção
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, CEP, 18618-689, Botucatu, São Paulo, Brazil
| | - Lucia Regina Machado da Rocha
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, CEP, 18618-689, Botucatu, São Paulo, Brazil
| | - Domingos Sávio Nunes
- Department of Chemistry, UEPG-Ponta Grossa State University, CEP, 84030-900, Ponta Grossa, Paraná, Brazil
| | | | - Gustavo Heiden
- Herbário ECT - Embrapa Clima Temperado, Rodovia BR 392, Km 78, CEP, 96010-971, Pelotas, RS, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology (Morphology), Biosciences Institute, UNESP-São Paulo State University, CEP, 18618-689, Botucatu, São Paulo, Brazil
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology (Morphology), Biosciences Institute, UNESP-São Paulo State University, CEP, 18618-689, Botucatu, São Paulo, Brazil
| | - Clélia Akiko Hiruma-Lima
- Department of Structural and Functional Biology (Physiology), Biosciences Institute, UNESP-São Paulo State University, CEP, 18618-689, Botucatu, São Paulo, Brazil.
| |
Collapse
|
6
|
Marmitt DJ, Goettert MI, Rempel C. Compounds of plants with activity against SARS-CoV-2 targets. Expert Rev Clin Pharmacol 2021; 14:623-633. [PMID: 33706626 PMCID: PMC8022338 DOI: 10.1080/17512433.2021.1903317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The COVID-19 global pandemic is a public health emergency due to its high virulence and mortality. Many vaccine development studies at clinical trials are currently conducted to combat SARS-CoV-2. Plants are a rich source of phytochemicals with different biological activities, including antiviral activities, which are the focus of many studies. AREAS COVERED This review shows compounds of traditional plants listed on RENISUS list have therapeutic properties against SARS-CoV-2 targets. EXPERT OPINION The rise of new variants, more pathogenic and virulent, impacts in the increase of mortality from SARS-CoV-2 infection, and thus, the control of the outbreaks of disease remains a global challenge. Other's drug and vaccines development is an essential element in controlling SARS-COV-2. Therefore, it is imperative that approach to tackle this pandemic has to be solidly evidence-informed. It should be noticed that the immune system does play critical roles in fighting viruses. Studies show that T cells levels decreased continuously as the disease progressed. T cell-mediated cellular immune response, probably by immunological memory, is essential for direct virus eradication after infection whilst B cells functions in producing antibodies that neutralize virus.But, have distinct patterns of T cell response exist in different patients, suggesting the possibility of distinct clinical approaches. Efforts are concentrated to elucidate the underlying immunological mechanisms in SARS-CoV-2 pathogenesis and progression for better design of diagnostic, therapeutic and preventive strategies. We seek to identify biomolecules with the potential to act in biomarkers that predict how severe the disease can get. But it is important to warn that the plants that produce the compounds mentioned here should not be used without a physician prescription. Finally, we speculate that these compounds may eventually attract the attention of physicians and researchers to perform tests in specific contexts of SARS-CoV-2 infection, and if they show positive results, be tested in Clinical trials.
Collapse
Affiliation(s)
- Diorge Jônatas Marmitt
- Programa De Pós-graduação Em Biotecnologia, Universidade Do Vale Do Taquari - Univates, Lajeado RS, Brazil
| | - Márcia Inês Goettert
- Programa De Pós-graduação Em Biotecnologia, Universidade Do Vale Do Taquari - Univates, Lajeado RS, Brazil
| | - Claudete Rempel
- Programa De Pós-graduação Em Ambiente E Desenvolvimento/Programa De Pós-graduação Em Sistemas Ambientais Sustentáveis, Universidade Do Vale Do Taquari – Univates , Lajeado RS, Brazil
| |
Collapse
|
7
|
Marmitt DJ, Shahrajabian MH, Goettert MI, Rempel C. Clinical trials with plants in diabetes mellitus therapy: a systematic review. Expert Rev Clin Pharmacol 2021; 14:735-747. [PMID: 33884948 DOI: 10.1080/17512433.2021.1917380] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The chronic metabolic disorder diabetes mellitus is a fast-growing global problem with huge social, health, and economic consequences, having one of the highest morbidities and mortality rates. Prolonged use of many available medications can produce undesirable side effects. Thus, plants appear as an important source of bioactive resources for the discovery of new treatments for diabetes. AREAS COVERED In this sense, this systematic review focused on clinical trials involving plants of National List of Medicinal Plants of Interest to the Unified Health System (RENISUS) (or compounds) with antidiabetic properties. We analyzed indexed studies in PubMed following the reporting guidelines of PRISMA. EXPERT OPINION Of the 51 clinical trials found, Curcuma longa, Glycine max, Zingiber officinale, Punica granatum, Aloe vera, Momordica charantia are the species with the greatest amount of clinical trials and the attenuation of insulin resistance, decreased fasting blood glucose and glycosylated hemoglobin levels are some of the main mechanisms by which these plants exert hypoglycemic effects. Thus, we speculate that the Clinical Pharmacology should explore the field of plant-based compounds that will keep concentrating the attention of researchers, and therefore, we gathered studies in advanced stages that highlight the role of plants in the diabetes therapy.
Collapse
Affiliation(s)
- Diorge Jonatas Marmitt
- Programa De Pós-graduação Em Biotecnologia, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brasil
| | | | - Márcia Inês Goettert
- Programa De Pós-graduação Em Biotecnologia, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brasil
| | - Claudete Rempel
- Programa De Pós-graduação Em Ambiente E Desenvolvimento/Programa De Pós-graduação Em Sistemas Ambientais Sustentáveis, Universidade Do Vale Do Taquari - Univates, Lajeado, RS, Brasil
| |
Collapse
|
8
|
Marmitt DJ, Shahrajabian MH. Plant species used in Brazil and Asia regions with toxic properties. Phytother Res 2021; 35:4703-4726. [DOI: 10.1002/ptr.7100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/26/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Affiliation(s)
- Diorge Jônatas Marmitt
- Post‐graduate Program in Biotechnology Taquari Valley University – Univates Lajeado RS Brazil
| | | |
Collapse
|
9
|
Kassuya RM, Radai JAS, Macorini LFB, Nunes VK, Salvador MJ, Leite PRT, Oliveira RJ, Croda J, Arena AC, Kassuya CAL. Blutaparon portulacoides ethanolic extract reduced IL-1β and inflammatory parameters induced by the Mycobacterium complex and carrageenan in mice. Inflammopharmacology 2020; 29:439-450. [PMID: 32910315 DOI: 10.1007/s10787-020-00752-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
Information on the health benefits of ethanolic extracts obtained from Blutaparon portulacoides stem (EEBP) hasn´t been consistently described in the literature until the present moment. This study investigated the antimycobacterial, anti-inflammatory and toxicological effects of EEBP in models of inflammation/infection, as well as its chemical composition. Chemical analysis of EEBP by electrospray ionization-mass spectrometry/HPLC-MS/MS identified 3,5,3'-Trihydroxy-4'-methoxy-6,7-methylenedioxy-flavone, gomphrenol, ferulic, vanillic, and caffeic acids. The minimum inhibitory concentration of EEBP and isoniazid in the presence of Mycobacterium tuberculosis was 123.4 and 0.030 µg/ml, respectively. EEBP oral administration (p.o.) (300-1000 mg/kg) or dexamethasone subcutaneous injection (s.c.) (1 mg/kg) significantly inhibited leukocytes and proteins resulting from carrageenan-induced pleurisy in Swiss mice. In the BCG-induced pleurisy model, the oral treatments performed once a day for 7 days, with EEBP (30 and 100 mg/kg) and isoniazid (25 mg/kg), inhibited the increase in plasmatic IL-1β levels and in pleural exudate from C57BL-6 mice, and reduced M. tuberculosis growth in organs (colony forming units assays). EEBP (30-300 mg/kg, p.o.) and dexamethasone (1 mg/s.c.) significantly prevented carrageenan-induced oedema and mechanical hyperalgesia in Swiss mice. The treatments (once a day for 22 days) with EEBP (30 mg/kg, p.o.) and dexamethasone (1 mg/s.c.) substantially inhibited oedema and mechanical- and cold-hyperalgesia at 11, 16 and 22 days after the administration of Freund's Complete Adjuvant in C57bL6 mice. No evidence of physio-pathologic was observed in Wistar rats acutely treated with EEBP (2000 mg/kg, p.o.). This study confirms the anti-inflammatory and antibiotic properties of EEBP, opening possibilities for the development of safe new drugs with dual anti-inflammatory/antimycobacterial activities which could be favorable from a pharmacoeconomic perspective.
Collapse
Affiliation(s)
- Roberto Mikio Kassuya
- Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | | | | | - Viktor Krejci Nunes
- Department of Plant Biology, PPG BTPB, and PPG BCE, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcos José Salvador
- Department of Plant Biology, PPG BTPB, and PPG BCE, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | - Júlio Croda
- School of Medicine, Federal University of Mato Grosso Do Sul, Campo Grande, MS, Brazil.,Department of Epidemiology of Microbial Diseases, Yale University School of Public Health, New Haven, United States of America.,Oswaldo Cruz Foundation, Campo Grande, MS, Brazil
| | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, Universidade Estadual Paulista (UNESP) - Botucatu, São Paulo State, Brazil
| | | |
Collapse
|
10
|
Marmitt DJ, Bitencourt S, Silva GRD, Rempel C, Goettert MI. RENISUS Plants and Their Potential Antitumor Effects in Clinical Trials and Registered Patents. Nutr Cancer 2020; 73:1821-1848. [PMID: 32835511 DOI: 10.1080/01635581.2020.1810290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/18/2022]
Abstract
Cancer is a significant cause of morbidity and mortality. Scientific advances, coupled with potential flaws in current treatments, are driving research into the discovery of new bioactive molecules. This systematic review focused on scientific studies with clinical trials and patents registered on the National Relation of Medicinal Plants of Interest to the Unified Health System (RENISUS) plants (or derivative compounds) with antitumor potential. Studies with 19 different forms of cancer were found, the prostate being the organ with the highest research incidence and the species Glycine max, Curcuma longa, and Zingiber officinale, beside the phytochemicals curcumin and soy isoflavone were the most tested in clinical trials/patents.
Collapse
Affiliation(s)
- Diorge Jônatas Marmitt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Shanna Bitencourt
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Gustavo Rodrigo da Silva
- Centro de Ciências Biológicas e da Saúde, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Claudete Rempel
- Programa de Pós-graduação em Ambiente e Desenvolvimento/Programa de Pós-graduação em Sistemas Ambientais Sustentáveis, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| | - Márcia Inês Goettert
- Laboratório de Cultura de Células, Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (Univates), Lajeado, Brazil
| |
Collapse
|