1
|
Zhao Y, Liang W, Liu Z, Chen X, Lin C. Impact of SDF-1 and AMD3100 on Hair Follicle Dynamics in a Chronic Stress Model. Biomolecules 2024; 14:1206. [PMID: 39456139 PMCID: PMC11505668 DOI: 10.3390/biom14101206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic stress is a common cause of hair loss, involving inflammatory responses and changes in cellular signaling pathways. This study explores the mechanism of action of the SDF-1/CXCR4 signaling axis in chronic stress-induced hair loss. The research indicates that SDF-1 promotes hair follicle growth through the PI3K/Akt and JAK/STAT signaling pathways. Transcriptome sequencing analysis was conducted to identify differentially expressed genes in the skin of normal and stressed mice, with key genes SDF-1/CXCR4 selected through machine learning and a protein-protein interaction network established. A chronic stress mouse model was created, with injections of SDF-1 and AMD3100 administered to observe hair growth, weight changes, and behavioral alterations and validate hair follicle activity. Skin SDF-1 concentrations were measured, differentially expressed genes were screened, and pathways were enriched. Activation of the PI3K/Akt and JAK/STAT signaling pathways was assessed, and siRNA technology was used in vitro to inhibit the expression of SDF-1 or CXCR4. SDF-1 promoted hair follicle activity, with the combined injection of SDF-1 and AMD3100 weakening this effect. The activation of the PI3K/Akt and JAK/STAT signaling pathways was observed in the SDF-1 injection group, confirmed by Western blot and immunofluorescence. Silencing SDF-1 through siRNA-mediated inhibition reduced cell proliferation and migration abilities. SDF-1 promotes hair growth in chronic stress mice by activating the PI3K/Akt and JAK/STAT pathways, an effect reversible by AMD3100. The SDF-1/CXCR4 axis may serve as a potential therapeutic target for stress-induced hair loss.
Collapse
Affiliation(s)
- Yinglin Zhao
- Department of Psychosomatic Medicine, Shantou University Mental Health Center, Wanji Industrial Zone, Taishan North Road, Shantou 515041, China;
| | - Wenzi Liang
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Zhehui Liu
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Xiuwen Chen
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| | - Changmin Lin
- Department of Histology and Embryology, Shantou University Medical College, No. 22 Xinling Road, Shantou 515041, China; (W.L.); (Z.L.); (X.C.)
| |
Collapse
|
2
|
Gan M, Xia X, You Y, Xu W, Peng X, Xu J, Wu W, Tang Y, Chen Q, Wu Y, Zeng N. Elevation and distraction of the Tibial periosteum in the management of chronic ischemic lower limb diseases. J Orthop Surg (Hong Kong) 2024; 32:10225536241295483. [PMID: 39467300 DOI: 10.1177/10225536241295483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/30/2024] Open
Abstract
OBJECTIVE This study investigates the effectiveness of tibia periosteum distraction (TPD) applied to the tibial periosteum, an innovative approach grounded in Ilizarov's tension-stress theory, for the treatment of ischemic diabetic foot and vasculitic foot conditions. METHODS A retrospective analysis was conducted on 33 patients (36 limbs) who underwent TPD between June 2019 and May 2022. The study comprised 21 males (23 limbs) and 12 females (13 limbs), aged 41 to 80 years (mean age: 63.4 years). Diabetic foot accounted for 27 cases, thromboangiitis obliterans for 2 cases, and arterial occlusive disease for 4 cases. The distribution of affected limbs included 15 left feet and 21 right feet. Periosteum traction commenced on the third postoperative day at a rate of approximately 0.75 mm/day, adjusted biweekly. The traction device was removed after two weeks. Evaluation included capillary refill and wound healing assessment, along with pre- and postoperative analysis of foot skin temperature, ankle-brachial index (ABI), visual analogue scale (VAS) pain scores, and peripheral blood oxygen saturation. CT angiography (CTA) was utilized to assess vascular conditions in both lower limbs. RESULTS All 33 patients were successfully followed up for a duration ranging from 4 to 24 weeks (mean: 11.03 weeks). VAS pain scores significantly decreased from preoperative (5.09 ± 1.70, range: 2-8) to postoperative two weeks (2.24 ± 0.90, range: 1-4) (t = 9.44, p < .001). Oxygen saturation levels increased from 83.88% ± 11.82% (range: 58%-97%) preoperatively to 91.36% ± 5.69% (range: 76%-98%) at two weeks postoperatively (t = -4.21, p < .001). Foot skin temperature also showed a significant increase (t = -3.98, p < .001). Capillary refill test at two weeks postoperatively demonstrated notable improvement. CTA revealed evident neovascularization in the operated limbs compared to preoperative conditions. Wound improvement was significant in all 33 patients within two months postoperatively. CONCLUSION TPD emerges as a promising technique for chronic ischemic lower limb diseases, demonstrating favorable preliminary outcomes in wound healing promotion and amputation rate reduction. Nevertheless, large-scale randomized controlled trials are essential to further validate its efficacy.
Collapse
Affiliation(s)
- Meng Gan
- Department of Orthopaedics, Yueyang Central Hospital, Yueyang, People's Repulic of China
| | - Xiqin Xia
- Department of Business English, School of Foreign Languages, Wuhan Business University, Wuhan, People's Repulic of China
| | - Yi You
- Department of Orthopaedics, Yueyang Central Hospital, Yueyang, People's Repulic of China
| | - Wei Xu
- Department of Orthopaedics, Yueyang Central Hospital, Yueyang, People's Repulic of China
| | - Xinyu Peng
- Department of Orthopaedics, Yueyang Central Hospital, Yueyang, People's Repulic of China
| | - Jinjun Xu
- Department of Orthopaedics, Yueyang Central Hospital, Yueyang, People's Repulic of China
| | - Wengao Wu
- Department of Orthopaedics, Yueyang Central Hospital, Yueyang, People's Repulic of China
| | - Yinkui Tang
- Department of Orthopaedics, Yueyang Central Hospital, Yueyang, People's Repulic of China
| | - Qiong Chen
- Department of Orthopaedics, Yueyang Central Hospital, Yueyang, People's Repulic of China
| | - Yun Wu
- Department of Orthopaedics, Zhuzhou 331 Hospital, Zhuzhou, People's Republic of China
- Department of Trauma Center, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, People's Republic of China
| | - Naxin Zeng
- Department of Orthopaedics, Yueyang Central Hospital, Yueyang, People's Repulic of China
| |
Collapse
|
3
|
Jansen TM, Janßen S, Bölke E, Homey B, Hoff N. Hair follicle punch grafts in hard-to-heal wounds: A monocenter study and patient survey. Health Sci Rep 2024; 7:e2319. [PMID: 39144406 PMCID: PMC11322219 DOI: 10.1002/hsr2.2319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/22/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024] Open
Abstract
Background and Aims Chronic wounds present a growing challenge in the aging population, resulting in an extended course of treatment and an increased influx of patients with recalcitrant wounds seeking admission to hospitals. Furthermore, the general trend in patient care is toward simple and inexpensive treatment methods, feasible in an outpatient setting with little material costs. This retrospective case study aims to elucidate the operative procedure and outcomes associated with hair follicle unit transplantation utilizing punch grafts from the scalp for the management of hard-to-heal wounds. Methods A cohort of 28 patients, comprising 20 males and eight females, with a mean age of 72.61 years (range: 48-89) and an average wound area of 82.49 cm2, underwent dissection of punch grafts containing hair follicles (2-3 mm in diameter) from the scalp. Subsequently, these grafts were transplanted into the wound bed. The retrospective evaluation of ulcer healing encompassed photo documentation and clinical records, while patient satisfaction was assessed through structured questionnaires. Results In 78.6% (22) of the cases, a favorable impact on wound healing was observed, characterized by epithelization, and in 57.1% (16) of the patients, complete wound closure was achieved. With the exception of one donor site, all other sites healed without complications. The patient survey indicated that the majority of individuals subjected to the procedure did not perceive it as painful or time-consuming. Notably, 81% (17) of individuals expressed a willingness to undergo the treatment again. Even in challenging wound conditions, such as pyoderma gangrenosum, our method demonstrated a positive effect on wound healing. Conclusion Within our cohort, the utilization of hair follicle units in the management of hard-to-heal wounds resulted in either complete or partial wound closure for the majority of patients, accompanied by minimal morbidity, reduced operation time, and a low incidence of complications and associated costs.
Collapse
Affiliation(s)
- Theresa M. Jansen
- Department of Dermatology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Sarah Janßen
- Department of Dermatology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Edwin Bölke
- Department of Radiotherapy and Radiooncology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| | - Norman‐Philipp Hoff
- Department of Dermatology, Medical Faculty and University Hospital DüsseldorfHeinrich Heine University DüsseldorfDüsseldorfGermany
| |
Collapse
|
4
|
Xing Y, Xiang F, Guo H, Gong H, Li Y. Reversibly immortalization establishes a hair follicle stem cell line with hair follicle reconstruction ability. Exp Dermatol 2024; 33:e14999. [PMID: 38284187 DOI: 10.1111/exd.14999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024]
Abstract
Hair follicle stem cells (HFSCs) play critical roles in the periodic regeneration of hair follicles. HFSCs are also a good model for stem cell biology research. However, no stable mouse HFSC cell line has been reported, which restricts the research and application of HFSCs. We isolated HFSCs from mouse hair follicles and immortalized them by inducing a reversible SV40 large T antigen. Through monoclonal screening, we identified a reversibly immortalized cell line, immortalized HFSC (iHFSC2). RNA sequencing, fluorescence-activated cell sorting, western blotting and immunofluorescence experiments revealed that the expression patterns of iHFSC2 and HFSC were similar at the protein and mRNA levels. After that, iHFSC2s were passaged and morphologically monitored for up to 40 times to detect their long-term culture potential. The long-term cultured iHFSC2 could regenerate hair follicles with complete hair follicle structure and HFSCs in the bulge area. This work successfully established an HFSC cell line with the ability of hair follicle reconstruction.
Collapse
Affiliation(s)
- Yizhan Xing
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| | - Fei Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Burn Research, Southwest Hospital, Army Medical University, Chongqing, PR China
| | - Haiying Guo
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| | - Hao Gong
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| | - Yuhong Li
- Department of Cell Biology, Army Medical University, Chongqing, PR China
| |
Collapse
|
5
|
Ou S, Wu X, Yang Y, Xia C, Zhang W, Qu Y, Li J, Chen B, Zhu L, Xu C, Qi Y. Tibial cortex transverse transport potentiates diabetic wound healing via activation of SDF-1/CXCR4 signaling. PeerJ 2023; 11:e15894. [PMID: 37727693 PMCID: PMC10506586 DOI: 10.7717/peerj.15894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/24/2023] [Indexed: 09/21/2023] Open
Abstract
Background The current treatments for diabetic foot ulcers have disadvantages of slow action and numerous complications. Tibial cortex transverse transport (TTT) surgery is an extension of the Ilizarov technique used to treat diabetic foot ulcers, and can shorten the repair time of diabetic foot ulcers. This study assessed the TTT technique for its effectiveness in healing diabetic foot ulcer skin lesions and its related molecular mechanisms. Methods Diabetic rat models were established by injecting healthy Sprague-Dawley rats with streptozotocin (STZ). The effects of TTT surgery on the model rats were assessed by recording changes in body weight, analyzing skin wound pictures, and performing H&E staining to assess the recovery of wounded skin. The numbers of endothelial progenitor cells (EPCs) in peripheral blood were analyzed by flow cytometry, and levels of CXCR4 and SDF-1 expression were qualitatively analyzed by immunofluorescence, immunohistochemistry, qRT-PCR, and western blotting. Results Both the histological results and foot wound pictures indicated that TTT promoted diabetic wound healing. Flow cytometry results showed that TTT increased the numbers of EPCs in peripheral blood as determined by CD34 and CD133 expression. In addition, activation of the SDF-1/CXCR4 signaling pathway and an accumulation of EPCs were observed in skin ulcers sites after TTT surgery. Finally, the levels of SDF-1 and CXCR4 mRNA and protein expression in the TTT group were higher than those in a blank or fixator group. Conclusion TTT promoted skin wound healing in diabetic foot ulcers possibly by activating the SDF-1/CXCR4 signaling pathway.
Collapse
Affiliation(s)
- Shuanji Ou
- Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Xiaodong Wu
- Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yang Yang
- Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Changliang Xia
- Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Wei Zhang
- Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yudun Qu
- Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Jiaxuan Li
- Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Bo Chen
- Department of Endocrinology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Lilin Zhu
- Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Changpeng Xu
- Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| | - Yong Qi
- Department of Orthopaedics, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Li S, Yu J, Zhang J, Li X, Yu J. LSD1 interacting with HSP90 promotes skin wound healing by inducing metabolic reprogramming of hair follicle stem cells through the c-MYC/LDHA axis. FASEB J 2023; 37:e23031. [PMID: 37342917 DOI: 10.1096/fj.202202001rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
It has been demonstrated that hair follicle stem cells (HFSCs) can contribute to wound closure and repair. However, the specific mechanism remains unclear due to the complexity of the wound repair process. Lysine-specific demethylase 1 (LSD1), an important gene for the regulation of stem cell differentiation, has been reported to participate in wound healing regulation. Heat shock protein 90 (HSP90), a chaperone protein, is recently discovered to be a driver gene for wound healing. This study explored the molecular mechanisms by which the binding between LSD1 and HSP90 affects the role of HFSCs during skin wound healing. Following bioinformatics analysis, the key genes acting on HFSCs were identified. The expression of LSD1, HSP90, and c-MYC was found to be upregulated in differentiated HFSCs. Analysis of their binding affinity revealed that LSD1 interacted with HSP90 to enhance the stability of the transcription factor c-MYC. Lactate dehydrogenase A (LDHA) has been documented to be essential for HFSC activation. Therefore, we speculate that LDHA may induce the differentiation of HFSCs through glucose metabolism reprogramming. The results showed that c-MYC activated LDHA activity to promote glycolytic metabolism, proliferation, and differentiation of HFSCs. Finally, in vivo animal experiments further confirmed that LSD1 induced skin wound healing in mice via the HSP90/c-MYC/LDHA axis. From our data, we conclude that LSD1 interacting with HSP90 accelerates skin wound healing by inducing HFSC glycolytic metabolism, proliferation, and differentiation via c-MYC/LDHA axis.
Collapse
Affiliation(s)
- Shuiqi Li
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Jie Yu
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Jiangan Zhang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Xiaohong Li
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| | - Jianbin Yu
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P. R. China
| |
Collapse
|
7
|
Wang M, Zhan H, Wang J, Song H, Sun J, Zhao G. Calcium silicate-stimulated adipose-derived stem cells promote angiogenesis and improve skin wound healing. Aging (Albany NY) 2023; 15:204760. [PMID: 37263631 DOI: 10.18632/aging.204760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Skin wound healing is a complicated process involving proliferation, inflammation, coagulation, and hemostasis, and scar tissue formation of wound repairing. Adipose-derived stem cells (ADSCs) have presented potential therapeutic effects in the non-healing and chronic wound. Calcium silicate (CS) ceramics have been identified as a new type of bioceramics for tissue construction and regeneration. Here, we aimed to explore the impact of CS on the regulation of ADSCs-mediated wound healing. Significantly, CS was able to dose-dependently enhance the proliferation of ADSCs. CS inhibited terminal deoxynucleotidyl transferase dUTP nick end labeling positive cells in the H2O2-treated ADSCs. Similarly, the Bcl-2 expression was elevated while Bax and cleaved caspase-3 expression were repressed by CS in the cells. CS could induce migration and reduce oxidative stress of ADSCs. Moreover, immunofluorescence analysis and Western blot analysis showed that CS could promote CXCR4 expression in ADSCs. Moreover, CS-stimulated ADSCs enhanced migration and angiogenic capacity of HUVEC. Importantly, CS-stimulated ADSCs improved wound healing in full-thickness skin defect mouse model. Thus, we conclude that CS improves ADSCs-attenuated wound healing in vivo and in vitro. Our finding presents novel insight in the scenario that CS regulates ADSCs and wound healing. CS may be applied as potential materials for the treatment of wound healing.
Collapse
Affiliation(s)
- Mingming Wang
- Department of Orthopaedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong, China
| | - Hongyan Zhan
- Department of B-Ultrasound, The Fourth People’s Hospital of Jinan, Jinan, Shandong, China
| | - Jianhua Wang
- Department of Orthopaedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong, China
| | - Hua Song
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong, China
| | - Jianhua Sun
- Department of Orthopaedics, Tengzhou Central People’s Hospital, Tengzhou, Shandong, China
| | - Gang Zhao
- Department of Orthopaedics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
8
|
Ma Y, Lin Z, Chen X, Zhao X, Sun Y, Wang J, Mou X, Zou H, Chen J. Human hair follicle-derived mesenchymal stem cells promote tendon repair in a rabbit Achilles tendinopathy model. Chin Med J (Engl) 2023; 136:1089-1097. [PMID: 37052142 PMCID: PMC10228488 DOI: 10.1097/cm9.0000000000002542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Hair follicles are easily accessible and contain stem cells with different developmental origins, including mesenchymal stem cells (MSCs), that consequently reveal the potential of human hair follicle (hHF)-derived MSCs in repair and regeneration. However, the role of hHF-MSCs in Achilles tendinopathy (AT) remains unclear. The present study investigated the effects of hHF-MSCs on Achilles tendon repair in rabbits. METHODS First, we extracted and characterized hHF-MSCs. Then, a rabbit tendinopathy model was constructed to analyze the ability of hHF-MSCs to promote repair in vivo . Anatomical observation and pathological and biomechanical analyses were performed to determine the effect of hHF-MSCs on AT, and quantitative real-time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemical staining were performed to explore the molecular mechanisms through which hHF-MSCs affects AT. Furthermore, statistical analyses were performed using independent sample t test, one-way analysis of variance (ANOVA), and one-way repeated measures multivariate ANOVA as appropriate. RESULTS Flow cytometry, a trilineage-induced differentiation test, confirmed that hHF-derived stem cells were derived from MSCs. The effect of hHF-MSCs on AT revealed that the Achilles tendon was anatomically healthy, as well as the maximum load carried by the Achilles tendon and hydroxyproline proteomic levels were increased. Moreover, collagen I and III were upregulated in rabbit AT treated with hHF-MSCs (compared with AT group; P < 0.05). Analysis of the molecular mechanisms revealed that hHF-MSCs promoted collagen fiber regeneration, possibly through Tenascin-C (TNC) upregulation and matrix metalloproteinase (MMP)-9 downregulation. CONCLUSIONS hHF-MSCs can be a treatment modality to promote AT repair in rabbits by upregulating collagen I and III. Further analysis revealed that treatment of AT using hHF-MSCs promoted the regeneration of collagen fiber, possibly because of upregulation of TNC and downregulation of MMP-9, thus suggesting that hHF-MSCs are more promising for AT.
Collapse
Affiliation(s)
- Yingyu Ma
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zhiwei Lin
- Zhejiang Healthfuture Biomedicine Co., Ltd, Hangzhou, Zhejiang 310052, China
| | - Xiaoyi Chen
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xin Zhao
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Yi Sun
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Ji Wang
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Mou
- Plastic and Reconstructive Surgery Center, Department of Plastic and Reconstructive Surgery, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Hai Zou
- Department of Critical Care, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jinyang Chen
- Zhejiang Healthfuture Biomedicine Co., Ltd, Hangzhou, Zhejiang 310052, China
| |
Collapse
|
9
|
Zhang J, Zhang Z, Wu X. C-X-C Chemokine Receptor Type 4 (CXCR-4) Functionally-Selective Allosteric Agonist ATI2341 Promotes the Recovery of Uterosacral Ligament. J BIOMATER TISS ENG 2023. [DOI: 10.1166/jbt.2023.3216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This study intends to assess whether CXCR4 functionally-selective allosteric agonist ATI2341 recovers uterosacral ligament. The 50 female rats were assigned into five groups including A group (normal healthy rats), B group (rats with uterine ligament injury), C group (injury rats treated
with UC-MSCs cells), D group (treated with ATI2341); E group (treated with UC-MSCs cells and ATI2341) followed by analysis of uterus pathological changes by H&E staining and the expression of CD44, CD90, CXCR4, and SDF-1 by Western Blot or PT-PCR. There was regular and pyknotic fibrillar
connective tissue and few small vessels in A group without infiltration of inflammatory cells. However, B group showed infiltration of inflammatory cells with few fibroblasts of fibrous tissue. The quantity of infiltration of inflammatory cells in C group and D group was less than that in
B group with few visible new-born vessels. The improvement of pathological condition in uterus tissue in E group was the most among treatment groups. The number of wavy fiber was increased gradually and fibrillar connective tissue was changed into dense with elevated new-born vessels in ligament.
The expression CD44, CD90, CXCR4 and SDF-1 was upregulated effectively by ATI2341. In conclusion, ATI2341 can upregulate the expression of CD44, CD90, CXCR4 and SDF-1 and promote the recovery of uterine ligament in rats, indicating that it might be a new approach for the treatment of uterine
ligament.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Obstetrics, Qingdao Municipal Hospital (Group), Qingdao, Shandong, 255400, China
| | - Zhendong Zhang
- Department of Obstetrics, Qingdao Municipal Hospital (Group), Qingdao, Shandong, 255400, China
| | - Xiaofeng Wu
- Department of Obstetrics, Qingdao Municipal Hospital (Group), Qingdao, Shandong, 255400, China
| |
Collapse
|
10
|
Zhao R, Liu J, Li Z, Zhang W, Wang F, Zhang B. Recent Advances in CXCL12/CXCR4 Antagonists and Nano-Based Drug Delivery Systems for Cancer Therapy. Pharmaceutics 2022; 14:pharmaceutics14081541. [PMID: 35893797 PMCID: PMC9332179 DOI: 10.3390/pharmaceutics14081541] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023] Open
Abstract
Chemokines can induce chemotactic cell migration by interacting with G protein-coupled receptors to play a significant regulatory role in the development of cancer. CXC chemokine-12 (CXCL12) can specifically bind to CXC chemokine receptor 4 (CXCR4) and is closely associated with the progression of cancer via multiple signaling pathways. Over recent years, many CXCR4 antagonists have been tested in clinical trials; however, Plerixafor (AMD3100) is the only drug that has been approved for marketing thus far. In this review, we first summarize the mechanisms that mediate the physiological effects of the CXCL12/CXCR4 axis. Then, we describe the use of CXCL12/CXCR4 antagonists. Finally, we discuss the use of nano-based drug delivery systems that exert action on the CXCL12/CXCR4 biological axis.
Collapse
Affiliation(s)
| | | | | | | | - Feng Wang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| | - Bo Zhang
- Correspondence: (F.W.); (B.Z.); Tel.: +86-536-8462490 (B.Z.)
| |
Collapse
|
11
|
Melatonin and the Programming of Stem Cells. Int J Mol Sci 2022; 23:ijms23041971. [PMID: 35216086 PMCID: PMC8879213 DOI: 10.3390/ijms23041971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Melatonin interacts with various types of stem cells, in multiple ways that comprise stimulation of proliferation, maintenance of stemness and self-renewal, protection of survival, and programming toward functionally different cell lineages. These various properties are frequently intertwined but may not be always jointly present. Melatonin typically stimulates proliferation and transition to the mature cell type. For all sufficiently studied stem or progenitor cells, melatonin’s signaling pathways leading to expression of respective morphogenetic factors are discussed. The focus of this article will be laid on the aspect of programming, particularly in pluripotent cells. This is especially but not exclusively the case in neural stem cells (NSCs) and mesenchymal stem cells (MSCs). Concerning developmental bifurcations, decisions are not exclusively made by melatonin alone. In MSCs, melatonin promotes adipogenesis in a Wnt (Wingless-Integration-1)-independent mode, but chondrogenesis and osteogenesis Wnt-dependently. Melatonin upregulates Wnt, but not in the adipogenic lineage. This decision seems to depend on microenvironment and epigenetic memory. The decision for chondrogenesis instead of osteogenesis, both being Wnt-dependent, seems to involve fibroblast growth factor receptor 3. Stem cell-specific differences in melatonin and Wnt receptors, and contributions of transcription factors and noncoding RNAs are outlined, as well as possibilities and the medical importance of re-programming for transdifferentiation.
Collapse
|
12
|
Hu XM, Li ZX, Zhang DY, Yang YC, Fu SA, Zhang ZQ, Yang RH, Xiong K. A systematic summary of survival and death signalling during the life of hair follicle stem cells. Stem Cell Res Ther 2021; 12:453. [PMID: 34380571 PMCID: PMC8359037 DOI: 10.1186/s13287-021-02527-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Hair follicle stem cells (HFSCs) are among the most widely available resources and most frequently approved model systems used for studying adult stem cells. HFSCs are particularly useful because of their self-renewal and differentiation properties. Additionally, the cyclic growth of hair follicles is driven by HFSCs. There are high expectations for the use of HFSCs as favourable systems for studying the molecular mechanisms that contribute to HFSC identification and can be applied to hair loss therapy, such as the activation or regeneration of hair follicles, and to the generation of hair using a tissue-engineering strategy. A variety of molecules are involved in the networks that critically regulate the fate of HFSCs, such as factors in hair follicle growth and development (in the Wnt pathway, Sonic hedgehog pathway, Notch pathway, and BMP pathway), and that suppress apoptotic cues (the apoptosis pathway). Here, we review the life cycle, biomarkers and functions of HFSCs, concluding with a summary of the signalling pathways involved in HFSC fate for promoting better understanding of the pathophysiological changes in the HFSC niche. Importantly, we highlight the potential mechanisms underlying the therapeutic targets involved in pathways associated with the treatment of hair loss and other disorders of skin and hair, including alopecia, skin cancer, skin inflammation, and skin wound healing.
Collapse
Affiliation(s)
- Xi-Min Hu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Zhi-Xin Li
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Dan-Yi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Yi-Chao Yang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Shen-Ao Fu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Zai-Qiu Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn Surgery, The First People's Hospital of Foshan, #81, Lingnan North Road, Foshan, 528000, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Morphological Sciences Building, 172 Tongzi Po Road, Changsha, 410013, China. .,Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China.
| |
Collapse
|