1
|
Gangaraj R, Kundu A, Rana VS, Das A, Chawla G, Prakash G, Debbarma R, Nagaraja A, Bainsla NK, Gupta NC, Kamil D. Metabolomic profiling and its association with the bio-efficacy of Aspergillus niger strain against Fusarium wilt of guava. Front Microbiol 2023; 14:1142144. [PMID: 37168123 PMCID: PMC10165087 DOI: 10.3389/fmicb.2023.1142144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023] Open
Abstract
Bio-control agents are the best alternative to chemicals for the successful management of plant diseases. The fungus Aspergillus niger is known to produce diverse metabolites with antifungal activity, attracting researchers to exploit it as a bio-control agent for plant disease control. In the present study, 11 A. niger strains were isolated and screened for their antagonism against the guava wilt pathogen under in vitro and in planta conditions. Strains were identified morphologically and molecularly by sequencing the internal transcribed spacer (ITS), β-tubulin, and calmodulin genes. The strains were evaluated through dual culture, volatile, and non-volatile methods under an in vitro study. AN-11, AN-6, and AN-2 inhibited the test pathogen Fusarium oxysporum f. sp. psidii (FOP) at 67.16%, 64.01%, and 60.48%, respectively. An in planta study was conducted under greenhouse conditions with 6 months old air-layered guava plants (var. Allahabad Safeda) by pre- and post-inoculation of FOP. The AN-11 strain was found to be effective under both pre- and post-inoculation trials. Furthermore, gas chromatography-mass spectrometry (GC-MS) analysis was carried out to characterize the volatile compounds of the most potential strain, A. niger. The hexane soluble fraction showed the appearance of characteristic peaks of hexadecenoic acid methyl ester (4.41%), 10-octadecanoic acid methyl ester (3.79%), dodecane (3.21%), undecane (3.19%), gibepyrone A (0.15%), 3-methylundecane (0.36%), and citroflex A (0.38%). The ethyl acetate fraction of the bio-control fungi revealed the occurrence of major antifungal compounds, such as acetic acid ethyl ester (17.32%), benzopyron-4-ol (12.17%), 1,2,6-hexanetriol (7.16%), 2-propenoic acid ethanediyl ester (2.95%), 1-(3-ethyloxiranyl)-ethenone (0.98%), 6-acetyl-8-methoxy dimethyl chromene (0.96%), 4-hexyl-2,5-dihydro dioxo furan acetic acid (0.19%), and octadecanoic acid (1.11%). Furthermore, bio-control abilities could be due to hyper-parasitism, the production of secondary metabolites, and competition for sites and nutrients. Indeed, the results will enrich the existing knowledge of metabolomic information and support perspectives on the bio-control mechanism of A. niger.
Collapse
Affiliation(s)
- R. Gangaraj
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Virendra Singh Rana
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Amrita Das
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Gautham Chawla
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - G. Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rubin Debbarma
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - A. Nagaraja
- Division of Fruits and Horticultural Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Naresh Kumar Bainsla
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Deeba Kamil
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Deeba Kamil
| |
Collapse
|
2
|
Rai M, Zimowska B, Gade A, Ingle P. Promising antimicrobials from Phoma spp.: progress and prospects. AMB Express 2022; 12:60. [PMID: 35604500 PMCID: PMC9125353 DOI: 10.1186/s13568-022-01404-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 11/10/2022] Open
Abstract
The increasing multidrug-resistance in pathogenic microbes and the emergence of new microbial pathogens like coronaviruses have necessitated the discovery of new antimicrobials to treat these pathogens. The use of antibiotics began after the discovery of penicillin by Alexander Fleming from Penicillium chrysogenum. This has attracted the scientific community to delve deep into the antimicrobial capabilities of various fungi in general and Phoma spp. in particular. Phoma spp. such as Phoma arachidicola, P. sorghina, P. exigua var. exigua, P. herbarum, P. multirostrata, P. betae, P. fimeti, P. tropica, among others are known to produce different bioactive metabolites including polyketides, macrosporin, terpenes and terpenoids, thiodiketopiperazines, cytochalasin derivatives, phenolic compounds, and alkaloids. These bioactive metabolites have already demonstrated their antimicrobial potential (antibacterial, antifungal, and antiviral) against various pathogens. In the present review, we have discussed the antimicrobial potential of secondary metabolites produced by different Phoma species. We have also deliberated the biogenic synthesis of eco-friendly antimicrobial silver nanoparticles from Phoma and their role as potential antimicrobial agents. Growing multidrug-resistance and emerging pathogens need new antimicrobial drugs Different species of Phoma produce antimicrobial metabolites Phoma spp. are potential synthesizers of silver nanoparticles demonstrating antimicrobial activity.
Collapse
|
3
|
Hridoy M, Gorapi MZH, Noor S, Chowdhury NS, Rahman MM, Muscari I, Masia F, Adorisio S, Delfino DV, Mazid MA. Putative Anticancer Compounds from Plant-Derived Endophytic Fungi: A Review. Molecules 2022; 27:296. [PMID: 35011527 PMCID: PMC8746379 DOI: 10.3390/molecules27010296] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Endophytic fungi are microorganisms that exist almost ubiquitously inside the various tissues of living plants where they act as an important reservoir of diverse bioactive compounds. Recently, endophytic fungi have drawn tremendous attention from researchers; their isolation, culture, purification, and characterization have revealed the presence of around 200 important and diverse compounds including anticancer agents, antibiotics, antifungals, antivirals, immunosuppressants, and antimycotics. Many of these anticancer compounds, such as paclitaxel, camptothecin, vinblastine, vincristine, podophyllotoxin, and their derivatives, are currently being used clinically for the treatment of various cancers (e.g., ovarian, breast, prostate, lung cancers, and leukemias). By increasing the yield of specific compounds with genetic engineering and other biotechnologies, endophytic fungi could be a promising, prolific source of anticancer drugs. In the future, compounds derived from endophytic fungi could increase treatment availability and cost effectiveness. This comprehensive review includes the putative anticancer compounds from plant-derived endophytic fungi discovered from 1990 to 2020 with their source endophytic fungi and host plants as well as their antitumor activity against various cell lines.
Collapse
Affiliation(s)
- Md. Hridoy
- Department of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
- Department of Pharmaceutical Sciences, School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| | | | - Sadia Noor
- Department of Pharmacy, University of Asia Pacific, Dhaka 1215, Bangladesh; (M.Z.H.G.); (S.N.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | | | | | - Isabella Muscari
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.M.); (F.M.)
| | - Francesco Masia
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (I.M.); (F.M.)
| | - Sabrina Adorisio
- Department of Medicine and Surgery, Foligno Nursing School and Section of Pharmacology, University of Perugia, Piazzale Severi, S. Andrea delle Fratte, 06129 Perugia, Italy;
| | - Domenico V. Delfino
- Department of Medicine and Surgery, Foligno Nursing School and Section of Pharmacology, University of Perugia, Piazzale Severi, S. Andrea delle Fratte, 06129 Perugia, Italy;
| | - Md. Abdul Mazid
- Department of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh;
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
4
|
Liu X, Zhou ZY, Cui JL, Wang ML, Wang JH. Biotransformation ability of endophytic fungi: from species evolution to industrial applications. Appl Microbiol Biotechnol 2021; 105:7095-7113. [PMID: 34499202 PMCID: PMC8426592 DOI: 10.1007/s00253-021-11554-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022]
Abstract
Increased understanding of the interactions between endophytic fungi and plants has led to the discovery of a new generation of chemical compounds and processes between endophytic fungi and plants. Due to the long-term co-evolution between fungal endophytes and host plants, endophytes have evolved special biotransformation abilities, which can have critical consequences on plant metabolic processes and their composition. Biotransformation or bioconversion can impact the synthesis and decomposition of hormones, sugars, amino acids, vitamins, lipids, proteins, and various secondary metabolites, including flavonoids, polysaccharides, and terpenes. Endophytic fungi produce enzymes and various bioactive secondary metabolites with industrial value and can degrade or sequester inorganic and organic small molecules and macromolecules (e.g., toxins, pollutants, heavy metals). These fungi also have the ability to cause highly selective catalytic conversion of high-value compounds in an environmentally friendly manner, which can be important for the production/innovation of bioactive molecules, food and nutrition, agriculture, and environment. This work mainly summarized recent research progress in this field, providing a reference for further research and application of fungal endophytes. KEY POINTS: •The industrial value of degradation of endophytes was summarized. • The commercial value for the pharmaceutical industry is reviewed.
Collapse
Affiliation(s)
- Xi Liu
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Zhong-Ya Zhou
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
- Modern Research Center for Traditional Chinese Medicine, The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jin-Long Cui
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China.
| | - Meng-Liang Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jun-Hong Wang
- Institute of Applied Chemistry, Shanxi University, Taiyuan, 030006, Shanxi, China
| |
Collapse
|
5
|
Raimi A, Adeleke R. Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. Arch Microbiol 2021; 203:1917-1942. [PMID: 33677637 DOI: 10.1007/s00203-021-02256-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Presently, several drug discovery investigations on therapeutic management of human health are aimed at bioprospecting for microorganisms, especially endophytic microbes of biotechnological importance. This review investigates the benefits of endophytes, especially in producing bioactive compounds useful in modern medicine by systematically reviewing published data from 12 databases. Only experimental studies investigating either or both bacterial and fungal endophytes and within the scope of this review were selected. The published data from the last 2 decades (2000-2019) revealed diverse endophytes associated with different plants produce a broad spectrum of bioactive compounds with therapeutic benefits. Notably, antibacterial, followed by anticancer and antifungal activities, were mostly reported. Only three studies investigated the anti-plasmodial activity. The variation observed in the synthesis of bioactive compounds amongst endophytes varied with host type, endophyte species, and cultivation medium. Fungal endophytes were more investigated than bacterial endophytes, with both endophytes having species diversity amongst literature. The endophytes were predominantly from medicinal plants and belonged to either Ascomycota (fungi) or Proteobacteria and Firmicutes (bacteria). This review presents excellent prospects of harnessing endophytes and their unique bioactive compounds in developing novel and effective compounds of medicinal importance.
Collapse
Affiliation(s)
- Adekunle Raimi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|
6
|
Fungal endophytes: A potent biocontrol agent and a bioactive metabolites reservoir. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101284] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Vu THN, Nguyen QH, Dinh TML, Quach NT, Khieu TN, Hoang H, Chu-Ky S, Vu TT, Chu HH, Lee J, Kang H, Li WJ, Phi QT. Endophytic actinomycetes associated with Cinnamomum cassia Presl in Hoa Binh province, Vietnam: Distribution, antimicrobial activity and, genetic features. J GEN APPL MICROBIOL 2019; 66:24-31. [PMID: 31378748 DOI: 10.2323/jgam.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Endophytic microbes associated with medicinal plants are considered to be potential producers of various bioactive secondary metabolites. The present study investigated the distribution, antimicrobial activity and genetic features of endophytic actinomycetes isolated from the medicinal plant Cinnamomum cassia Presl collected in Hoa Binh province of northern Vietnam. Based on phenotypic characteristics, 111 actinomycetes were isolated from roots, stems and leaves of the host plants by using nine selective media. The isolated actinomycetes were mainly recovered from stems (n = 67; 60.4%), followed by roots (n = 29; 26.1%) and leaves (n = 15; 13.5%). The isolates were accordingly assigned into 5 color categories of aerial mycelium, of which gray is the most dominant (n = 42; 37.8%), followed by white (n = 33; 29.7%), yellow (n = 25; 22,5%), red (n = 8; 7.2%) and green (n = 3; 2.7%). Of the total endophytic actinomycetes tested, 38 strains (occupying 34.2%) showed antimicrobial activity against at least one of nine tested microbes and, among them, 26 actinomycetes (68.4%) revealed anthracycline-like antibiotics production. Analysis of 16S rRNA gene sequences deposited on GenBank (NCBI) of the antibiotic-producing actinomycetes identified 3 distinct genera, including Streptomyces, Microbacterium, and Nocardia, among which Streptomyces genus was the most dominant and represented 25 different species. Further genetic investigation of the antibiotic-producing actinomycetes found that 28 (73.7%) and 11 (28.9%) strains possessed genes encoding polyketide synthase (pks) and nonribosomal peptide synthetase (nrps), respectively. The findings in the present study highlighted endophytic actinomycetes from C. cassia Presl which possessed broad-spectrum bioactivities with the potential for applications in the agricultural and pharmaceutical sectors.
Collapse
Affiliation(s)
- Thi Hanh Nguyen Vu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Quang Huy Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST).,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST).,University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST)
| | - Thi My Linh Dinh
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Ngoc Tung Quach
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Thi Nhan Khieu
- Department of Science, Technology and Environment, Ministry of Education and Training
| | - Ha Hoang
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST)
| | - Son Chu-Ky
- School of Biotechnology and Food Technology (SBFT), Hanoi University of Science and Technology (HUST)
| | - Thu Trang Vu
- School of Biotechnology and Food Technology (SBFT), Hanoi University of Science and Technology (HUST)
| | - Hoang Ha Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST).,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST)
| | - Jusung Lee
- The Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University NS-80
| | - Heonjoong Kang
- The Center for Marine Natural Products and Drug Discovery, School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University NS-80.,Research Institute of Oceanography, Seoul National University NS-80
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University
| | - Quyet-Tien Phi
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST).,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST)
| |
Collapse
|
8
|
Serrano R, González-Menéndez V, Rodríguez L, Martín J, Tormo JR, Genilloud O. Co-culturing of Fungal Strains Against Botrytis cinerea as a Model for the Induction of Chemical Diversity and Therapeutic Agents. Front Microbiol 2017; 8:649. [PMID: 28469610 PMCID: PMC5396503 DOI: 10.3389/fmicb.2017.00649] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 03/29/2017] [Indexed: 01/10/2023] Open
Abstract
New fungal SMs (SMs) have been successfully described to be produced by means of in vitro-simulated microbial community interactions. Co-culturing of fungi has proved to be an efficient way to induce cell–cell interactions that can promote the activation of cryptic pathways, frequently silent when the strains are grown in laboratory conditions. Filamentous fungi represent one of the most diverse microbial groups known to produce bioactive natural products. Triggering the production of novel antifungal compounds in fungi could respond to the current needs to fight health compromising pathogens and provide new therapeutic solutions. In this study, we have selected the fungus Botrytis cinerea as a model to establish microbial interactions with a large set of fungal strains related to ecosystems where they can coexist with this phytopathogen, and to generate a collection of extracts, obtained from their antagonic microbial interactions and potentially containing new bioactive compounds. The antifungal specificity of the extracts containing compounds induced after B. cinerea interaction was determined against two human fungal pathogens (Candida albicans and Aspergillus fumigatus) and three phytopathogens (Colletotrichum acutatum, Fusarium proliferatum, and Magnaporthe grisea). In addition, their cytotoxicity was also evaluated against the human hepatocellular carcinoma cell line (HepG2). We have identified by LC-MS the production of a wide variety of known compounds induced from these fungal interactions, as well as novel molecules that support the potential of this approach to generate new chemical diversity and possible new therapeutic agents.
Collapse
Affiliation(s)
- Rachel Serrano
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| | - Víctor González-Menéndez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| | - Lorena Rodríguez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| | - José R Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| | - Olga Genilloud
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en AndalucíaGranada, Spain
| |
Collapse
|
9
|
The Fungal Endobiome of Medicinal Plants: A Prospective Source of Bioactive Metabolites. MEDICINAL AND AROMATIC PLANTS OF THE WORLD 2017. [DOI: 10.1007/978-981-10-5978-0_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
10
|
Tan J, Qi H, Ni J. Extracts of endophytic fungus xkc-s03 from Prunella vulgaris L. spica inhibit gastric cancer in vitro and in vivo.. Oncol Lett 2014; 9:945-949. [PMID: 25624914 PMCID: PMC4301540 DOI: 10.3892/ol.2014.2722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/26/2014] [Indexed: 01/16/2023] Open
Abstract
Prunella vulgaris L. belongs to the Prunella genus and has been proven effective in the treatment of gastric cancer, however, the therapeutic activity of the endophytic fungi is not yet well understood. The results of the present study suggest that the ethyl acetate extract (S03-EA) of the endophytic fungus XKC-S03, isolated from Prunella vulgaris L. spica, is a potent anticancer agent with the potential to treat gastric cancer. In the present study, the effects of S03-EA on gastric cancer in vitro and in vivo were determined using the 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan assay and the human gastric cancer SGC 7901 cell xenograft model. The tumor tissue was fixed with 10% formaldehyde solution and the levels of the apoptotic proteins, B-cell lymphoma protein-2 (Bcl-2), Bcl-2-associated X protein (Bax) and pro-angiogenic vascular endothelial growth factor (VEGF), were measured by immunohistochemistry. The results indicated that treating SGC 7901 cells with petroleum ether (S03-PE), ethyl acetate (S03-EA) or dichloromethane (S03-DM) extracts from the XKC-S03 fermentation broth inhibited cell proliferation. S03-EA demonstrated the best activity, with a half maximal inhibitory concentration of 25.89 μg/ml and dose-dependent suppression of the SGC 7901 tumor cells in vivo, without any evident adverse effects. In addition, the 100-mg/kg/day S03-EA-treated tumor tissue revealed a downregulation of Bcl-2 and VEGF expression and an upregulation of Bax expression. In conclusion, the S03-EA extract of XKC-S03, isolated from Prunella vulgaris L. spica, exhibits a growth-suppressive activity on gastric cancer in vitro and in vivo.
Collapse
Affiliation(s)
- Jianan Tan
- Department of Surgery, Second Hospital of Zhongnan University, Changsha, Hunan 410011, P.R. China
| | - Haizhi Qi
- Department of Surgery, Second Hospital of Zhongnan University, Changsha, Hunan 410011, P.R. China
| | - Jiangdon Ni
- Department of Surgery, Second Hospital of Zhongnan University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|