1
|
Chen S, Sun J, Wen W, Chen Z, Yu Z. Integrative multi-omics summary-based mendelian randomization identifies key oxidative stress-related genes as therapeutic targets for atrial fibrillation and flutter. Front Genet 2024; 15:1447872. [PMID: 39359474 PMCID: PMC11445139 DOI: 10.3389/fgene.2024.1447872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/29/2024] [Indexed: 10/04/2024] Open
Abstract
Background Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with substantial morbidity and mortality. Oxidative stress (OS) has been implicated in the pathogenesis of AF, suggesting that targeting OS-related genes could offer novel therapeutic opportunities. This study aimed to identify causal OS-related genes contributing to AF through a comprehensive multi-omics Summary-based Mendelian Randomization (SMR) approach. Methods This study integrated data from genome-wide association studies (GWAS) with methylation quantitative trait loci (mQTL), expression QTL (eQTL), and protein QTL (pQTL) to explore the relationships between oxidative stress-related (OS-related) genes and AF risk. Genes associated with oxidative stress and AF were obtained from the Nielsen et al. study (discovery) and the FinnGen study (replication). The SMR analysis and HEIDI test were utilized to assess causal associations, followed by Bayesian co-localization analysis (PPH4 > 0.5) to confirm shared causal variants. Multi-omics data were employed to analyze the associations within mQTL-eQTL pathways. A two-sample MR analysis was conducted for sensitivity verification. The significance of findings was determined using a false discovery rate (FDR) < 0.05 and p_HEIDI > 0.01. Results At the DNA methylation level, 19 CpG sites near 7 unique genes were found to have causal effects on AF and strong co-localization evidence support (PPH4 > 0.70). At the gene expression level, six oxidative stress-related genes from eQTLGen and three from GTEx (v8), including TNFSF10, CDKN1A, ALOX15, TTN, PTK2, ALB, KCNJ5, and CASQ2, were found to have causal effects on AF in the sensitivity and co-localization analyses (PPH4 > 0.50). At the circulating protein level, both ALAD (OR 0.898, 95% CI 0.845-0.954, PPH4 = 0.67) and APOH (OR 0.896, 95% CI 0.844-0.952, PPH4 = 0.93) were associated with a lower risk of AF, and APOH was validated in the replication group. After integrating the multi-omics data between mQTL and eQTL, we identified two oxidative stress-related genes, TTN and CASQ2. The methylation of cg09915519 and cg10087519 in TTN was associated with higher expression of TTN and a lower risk of AF, which aligns with the negative effect of TTN gene expression on AF risk. TTN may play a protective role in AF. Conclusion This study identified several OS-related genes, particularly TTN, as having causal roles in AF, which were verified across three-omics pathways. The findings underscore the importance of these genes in AF pathogenesis and highlight their potential as therapeutic targets. The integration of multi-omics data provides a comprehensive understanding of the molecular mechanisms underlying AF, paving the way for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Shijian Chen
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Junlong Sun
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Wen Wen
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Zhenfeng Chen
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| | - Ziheng Yu
- Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China
- Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, China
| |
Collapse
|
2
|
Sosnowska B, Stepinska J, Mitkowski P, Bielecka-Dabrowa A, Bobrowska B, Budzianowski J, Burchardt P, Chlebus K, Dobrowolski P, Gasior M, Jankowski P, Kubica J, Mickiewicz A, Mysliwiec M, Osadnik T, Prejbisz A, Rajtar-Salwa R, Wita K, Witkowski A, Gil R, Banach M. Recommendations of the Experts of the Polish Cardiac Society (PCS) and the Polish Lipid Association (PoLA) on the diagnosis and management of elevated lipoprotein(a) levels. Arch Med Sci 2024; 20:8-27. [PMID: 38414479 PMCID: PMC10895977 DOI: 10.5114/aoms/183522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/29/2024] Open
Abstract
Lipoprotein(a) [Lp(a)] is made up of a low-density lipoprotein (LDL) particle and a specific apolipoprotein(a). The blood concentration of Lp(a) is approximately 90% genetically determined, and the main genetic factor determining Lp(a) levels is the size of the apo(a) isoform, which is determined by the number of KIV2 domain repeats. The size of the apo(a) isoform is inversely proportional to the blood concentration of Lp(a). Lp(a) is a strong and independent cardiovascular risk factor. Elevated Lp(a) levels ≥ 50 mg/dl (≥ 125 nmol/l) are estimated to occur in more than 1.5 billion people worldwide. However, determination of Lp(a) levels is performed far too rarely, including Poland, where, in fact, it is only since the 2021 guidelines of the Polish Lipid Association (PoLA) and five other scientific societies that Lp(a) measurements have begun to be performed. Determination of Lp(a) concentrations is not easy due to, among other things, the different sizes of the apo(a) isoforms; however, the currently available certified tests make it possible to distinguish between people with low and high cardiovascular risk with a high degree of precision. In 2022, the first guidelines for the management of patients with elevated lipoprotein(a) levels were published by the European Atherosclerosis Society (EAS) and the American Heart Association (AHA). The first Polish guidelines are the result of the work of experts from the two scientific societies and their aim is to provide clear, practical recommendations for the determination and management of elevated Lp(a) levels.
Collapse
Affiliation(s)
- Bożena Sosnowska
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | | | - Przemyslaw Mitkowski
- 1 Department of Cardiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agata Bielecka-Dabrowa
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Department of Cardiology and Adult Congenital Defects, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
| | - Beata Bobrowska
- Department of Clinical Cardiology and Cardiovascular Interventions, University Hospital in Krakow, Krakow, Poland
| | - Jan Budzianowski
- Department of Interventional Cardiology and Cardiac Surgery, University of Zielona Gora, Collegium Medicum, Zielona Gora, Poland
- Multidisciplinary Hospital, Nowa Sol, Poland
| | - Pawel Burchardt
- Department of Cardiology, J. Strus Hospital, Poznan, Poland
- Department of Hypertension, Angiology and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Krzysztof Chlebus
- National Center for Familial Hypercholesterolemia, 1 Chair and Department of Cardiology, Medical University of Gdansk, Gdansk, Poland
| | - Piotr Dobrowolski
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Mariusz Gasior
- 3 Department of Cardiology, Silesian Centre for Heart Diseases, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Zabrze, Poland
| | - Piotr Jankowski
- Department of Internal Medicine and Geriatric Cardiology, Medical Centre for Postgraduate Education, Warsaw, Poland
| | - Jacek Kubica
- Department of Cardiology and Internal Medicine, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Agnieszka Mickiewicz
- Lipoprotein Apheresis Laboratory, 1 Department of Cardiology, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Mysliwiec
- Department of Paediatrics, Diabetology and Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Tadeusz Osadnik
- Department of Pharmacology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Aleksander Prejbisz
- Department of Epidemiology, Cardiovascular Disease Prevention and Health Promotion, National Institute of Cardiology, Warsaw, Poland
| | - Renata Rajtar-Salwa
- Department of Clinical Cardiology and Cardiovascular Interventions, University Hospital in Krakow, Krakow, Poland
| | - Kristian Wita
- 1 Department of Cardiology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Adam Witkowski
- Department of Interventional Cardiology and Angiology, National Institute of Cardiology, Warsaw, Poland
| | - Robert Gil
- Department of Cardiology, National Medical Institute of the Ministry of Internal Affairs and Administration, Warsaw, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Department of Cardiology and Adult Congenital Defects, Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland
- Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|