1
|
Xu S, Liu L, Li C, Ren Y, Zhang M, Xiang L, Li N, Xu J, Bai S, Lv Y. Correlation Among Psoriasis, Iridocyclitis, and Non-alcoholic Fatty Liver Disease: Insights from Mendelian Randomization and Mediation Analysis. Int J Med Sci 2025; 22:121-131. [PMID: 39744174 PMCID: PMC11659831 DOI: 10.7150/ijms.102369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/14/2024] [Indexed: 02/01/2025] Open
Abstract
Purpose: The aim of this study is to utilize two-sample Mendelian randomization (MR) to investigate the potential causal relationship among psoriasis, iridocyclitis, and non-alcoholic fatty liver disease (NAFLD), and to explore any potential mediation effects. Methods: Pooled data were derived from the public genome-wide association study (GWAS) in NAFLD (finn-b-NAFLD), iridocyclitis (finn-b-H7_IRIDOCYCLITIS) and psoriasis (finn-b-L12_PSORI_VULG). Univariable MR (UVMR) analysis was implemented to explore the causal relationship among psoriasis, iridocyclitis, and NAFLD, and inverse variance weighting (IVW) was used as the primary analytical method. Additionally, Cochran's Q and MR-Egger tests were utilized to evaluate the heterogeneity and horizontal pleiotropy, respectively. Simultaneously, the reliability of MR results was evaluated by leave-one-out (LOO) method. Finally, multivariable MR (MVMR) analysis and mediation analysis were performed to further reveal the mechanism of mediation effect among the three diseases. Results: With regard to the results of IVW method, both iridocyclitis (P=0.0185, OR=1.0757) and psoriasis (P=0.0115, OR=1.1246) had significant causal relationships with the occurrence of NAFLD, and both were risk factors for NAFLD. Besides, it was observed that there was significant causal effect of iridocyclitis (P= 0.0181, OR=1.1729) on psoriasis and iridocyclitis was a risk factor. Additionally, there was a lack of heterogeneity (P>0.05) among the selected SNPs when MR analysis was conducted with NAFLD as the outcome. Horizontal pleiotropy was not detected by the MR-Egger test. The LOO analysis demonstrated that the instrumental variables were appropriately chosen, suggesting the reliability of the MR results. Ultimately, MVMR and mediation analysis revealed iridocyclitis affected the development of NAFLD, 20.81% of which was caused by the pathway of iridocyclitis induced psoriasis leading to NAFLD. Conclusion: This study highlighted that iridocyclitis was significantly associated with an increased risk of NAFLD and that psoriasis was involved in the mechanism by which iridocyclitis triggered NAFLD, which might offer potential preventive strategies for NAFLD.
Collapse
Affiliation(s)
- Shuqin Xu
- Department of hepatobiliary surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Long Liu
- Department of hepatobiliary surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Chentao Li
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou 511457, China
| | - Yaoxing Ren
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- School of Future Technology, Xi'an Jiaotong University, Xi'an 710061, China
| | - Miaomiao Zhang
- Department of hepatobiliary surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Provincial Key Laboratory of Magnetic Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Linbiao Xiang
- Department of hepatobiliary surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Nan Li
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiaru Xu
- Zonglian College, Xi'an Jiaotong University, Xi'an 710061, China
| | - Shuang Bai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Provincial Key Laboratory of Magnetic Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yi Lv
- Department of hepatobiliary surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Provincial Key Laboratory of Magnetic Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Province Center for Regenerative Medicine and Surgery Engineering Research, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
2
|
Chen J, Chen L, Li B, Zhao Q, Cheng Y, Yan D, Liu H, Li F. Mass spectrometry-based metabolomics reveals metabolism of molnupiravir may lead to metabolic disorders and hepatotoxicity. Biomed Chromatogr 2024; 38:e5996. [PMID: 39175367 DOI: 10.1002/bmc.5996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Molnupiravir (MO) is a pyrimidine nucleoside anti-SARS-CoV-2 drug. MO treatment could cause mild liver injury. However, the underlying mechanism of MO-induced liver injury and the metabolic pathway of MO in vivo are unclear. In this study, metabolomics analysis and molecular biology methods were used to explore these issues. Through metabolomics analysis, it was found that the homeostasis of pyrimidine, purine, lysophosphatidylcholine (LPC), and amino acids in mice was destroyed after MO treatment. A total of 80 changed metabolites were detected. Among these changed metabolites, 4-ethylphenyl sulfate, dihydrouracil, and LPC 20:0 was related to the elevation of alkaline phosphatase (ALP), interleukin-6 (IL6), and nuclear factor kappa-B (NF-κB). The levels of 4-ethylphenyl sulfate, dihydrouracil, and LPC 20:0 in plasma were positively correlated with their levels in the liver, suggesting that these metabolites were associated with MO-induced liver injury. MO treatment could increase NHC and cytidine levels, activate cytidine deaminase (CDA), and increase LPC levels. CDA and LPC could increase the mRNA expression level of toll-like receptor (TLR). The current study indicated that the elevation of hepatic TLR may be an important reason for MO leading to the liver injury.
Collapse
Affiliation(s)
- Jiahui Chen
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Gastroenterology & Hepatology, Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiong Chen
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Gastroenterology & Hepatology, Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin Li
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Qi Zhao
- Department of Gastroenterology & Hepatology, Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Cheng
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Gastroenterology & Hepatology, Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongmei Yan
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hongning Liu
- Academician Workstation, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fei Li
- Department of Gastroenterology & Hepatology, Laboratory of Hepato-intestinal Diseases and Metabolism, Frontiers Science Center for Disease-Related Molecular Network, and State Key Laboratory of Respiratory Health and Multimorbidity, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Lei P, Lü J, Yao T, Zhang P, Chai X, Wang Y, Jiang M. Verbascoside exerts an anti-atherosclerotic effect by regulating liver glycerophospholipid metabolism. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
4
|
Concise review of lipidomics in nonalcoholic fatty liver disease. DIABETES & METABOLISM 2023; 49:101432. [PMID: 36781065 DOI: 10.1016/j.diabet.2023.101432] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/23/2023] [Accepted: 02/01/2023] [Indexed: 02/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses simple liver steatosis, nonalcoholic steatohepatitis (NASH), and liver fibrosis that can progress to cirrhosis. NAFLD has become the principal cause of chronic liver disease in many parts of the world. Lipidomic studies, by allowing to determine concentrations of lipid classes and fatty acid composition of different lipid species, have been of great interest to help understand NAFLD pathophysiology and potentially identify novel biomarkers for diagnosis and prognosis. Indeed, lipidomic data give information on qualitative lipid abnormalities associated with NAFLD. The aim of our article was to create a comprehensive and more synthetic review of main results from lipidomic studies in NAFLD. Literature was searched for all human lipidomic studies evaluating plasma samples of individuals with NAFLD. Results were regrouped by the degree of liver damage, either simple steatosis, NASH or liver fibrosis, and presented by lipid categories. Overall, we summarized the main lipidomic abnormalities associated with NAFLD as follows: modification of free fatty acid distribution, increase in ceramides, reduced phosphatidylcholine / phosphatidylethanolamine ratio, and increase in eicosanoids. These lipid abnormalities are likely to promote NASH and liver fibrosis by inducing mitochondrial dysfunction, apoptosis, inflammation, oxidation, and endoplasmic reticulum stress. Although these lipidomic abnormalities are consistently reported in many studies, further research is needed to clarify whether they may be predictive for liver steatosis, NASH or liver fibrosis.
Collapse
|
5
|
Chen Y, Yan X, Wang T, Deng H, Deng X, Xu F, Liang H. PNPLA3 148M/M Is More Susceptible to Palmitic Acid-Induced Endoplasmic Reticulum Stress-Associated Apoptosis in HepG2 Cells. Int J Endocrinol 2023; 2023:2872408. [PMID: 36825197 PMCID: PMC9943609 DOI: 10.1155/2023/2872408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Patatin-like phospholipase domain-containing 3 (PNPLA3) is a major susceptibility gene for nonalcoholic fatty liver disease (NAFLD), and its rs738409 (I148M) polymorphism is associated with the occurrence and progression of NAFLD. Endoplasmic reticulum (ER) stress-related hepatocyte lipoapoptosis contributes to the progress of NAFLD. PNPLA3 is also known as a member of the calcium-independent phospholipase A2ε family, which can hydrolyze fatty acids to generate lysophosphatidylcholine (LPC) that induces ER stress-related hepatocyte lipoapoptosis. Whether the PNPLA3 risk genotype 148M/M is involved in more severe ER stress-associated lipoapoptosis is unclear. METHODS A PNPLA3148I knock-in HepG2 cell model was constructed based on HepG2 expressing PNPLA3 148M/M using the Cas9/sgRNA system. PNPLA3 148M/M, I/M, and I/I cells were treated with 0.3 mM palmitic acid (PA) for 24 h to induce lipid deposition. Cellular lipid deposition was detected by oil red staining. Apoptosis was observed by TUNEL. LPC was determined by ELISA, and the expression of PNPLA3, the ER stress marker Bip, molecules involved in the ER stress PERK/elF-2a pathway, and its downstream C/EBP homologous protein (CHOP)-mediated apoptotic pathway were detected by western blot. RESULTS The results showed no difference in PNPLA3 basal expression and basal hepatocyte lipid content between the three genotypes of cells. Lipid deposition and apoptosis were more severe in PNPLA3 148M/M and 148I/M cells than in I/I cells after PA treatment. PA-induced upregulation of protein expression of Bip, ER stress-responsive PERK pathway molecules p-PERK, p-eIF2α, CHOP, and CHOP-associated apoptotic molecules PUMA and Bax were more pronounced in PNPLA3 148M/M cells than in PNPLA3 148I/I cells. The basal LPC levels and the PA-treated increase of LPC levels in the cell culture supernatants did not differ between the three genotypic cells. CONCLUSION PNPLA3 148M/M cells were more susceptible to PA-induced lipid deposition and ER stress-related apoptosis than 148I/I cells, and the proapoptotic susceptibility of PNPLA3 148M/M is independent of LPC.
Collapse
Affiliation(s)
- Yunzhi Chen
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
- Guangdong Provincial People's Hospital, Guangzhou 510080, China
| | - Xuemei Yan
- Department of Endocrinology and Metabolism, Joint Service Support Force 903 Hospital, Hangzhou 310005, China
| | - Tian Wang
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Hongrong Deng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Xiaojie Deng
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Fen Xu
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Hua Liang
- Department of Endocrinology and Metabolism, Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| |
Collapse
|
6
|
Impact of Feeding Probiotics on Blood Parameters, Tail Fat Metabolites, and Volatile Flavor Components of Sunit Sheep. Foods 2022; 11:foods11172644. [PMID: 36076827 PMCID: PMC9455658 DOI: 10.3390/foods11172644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Sheep crude tail fat has unique nutritional values and is used as a raw material for high-quality natural oil. The purpose of this study was to investigate the effects of probiotics on the metabolites and flavor of sheep crude tail fat. In this study, 12 Sunit sheep were randomly divided into an experimental group (LTF, basal feed + Lactiplantibacillusplantarum powder) and a control group (CTF, basal feed). The results of sheep crude tail fat analysis showed that blood lipid parameters were significantly lower and the expression of fatty acid synthase and stearoyl-CoA desaturase genes higher in the LTF group than in the CTF group (p < 0.05). Metabolomic analysis via liquid chromatography−mass spectrometry showed that the contents of metabolites such as eicosapentaenoic acid, 16-hydroxypalmitic acid, and L-citrulline were higher in the LTF group (p < 0.01). Gas chromatography−mass spectrometry detection of volatile flavor compounds in the tail fat showed that nonanal, decanal, and 1-hexanol were more abundant in the LTF group (p < 0.05). Therefore, Lactiplantibacillus plantarum feeding affected blood lipid parameters, expression of lipid metabolism-related genes, tail fat metabolites, and volatile flavor compounds in Sunit sheep. In this study, probiotics feeding was demonstrated to support high-value sheep crude tail fat production.
Collapse
|
7
|
Šmíd V, Dvořák K, Šedivý P, Kosek V, Leníček M, Dezortová M, Hajšlová J, Hájek M, Vítek L, Bechyňská K, Brůha R. Effect of Omega-3 Polyunsaturated Fatty Acids on Lipid Metabolism in Patients With Metabolic Syndrome and NAFLD. Hepatol Commun 2022; 6:1336-1349. [PMID: 35147302 PMCID: PMC9134818 DOI: 10.1002/hep4.1906] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/06/2022] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease. n-3 polyunsaturated fatty acids (n-3-PUFAs) have been reported to ameliorate the progression of NAFLD in experimental studies; however, clinical trials have yielded contradictory results. The aim of our study was to assess the effects of n-3-PUFA administration on lipid metabolism and the progression of NAFLD in patients with metabolic syndrome. Sixty patients with metabolic syndrome and NAFLD were randomized in a double-blind placebo-controlled trial (3.6 g/day n-3-PUFA vs. placebo). During the 1-year follow-up, the patients underwent periodic clinical and laboratory examinations, liver stiffness measurements, magnetic resonance spectroscopy of the liver, and plasma lipidomic analyses. After 12 months of n-3-PUFA administration, a significant decrease in serum GGT activity was recorded compared with the placebo group (2.03 ± 2.8 vs. 1.43 ± 1.6; P < 0.05). Although no significant changes in anthropometric parameters were recorded, a significant correlation between the reduction of liver fat after 12 months of treatment-and weight reduction-was observed; furthermore, this effect was clearly potentiated by n-3-PUFA treatment (P < 0.005). In addition, n-3-PUFA treatment resulted in substantial changes in the plasma lipidome, with n-3-PUFA-enriched triacylglycerols and phospholipids being the most expressed lipid signatures. Conclusion: Twelve months of n-3-PUFA treatment of patients with NAFLD patients was associated with a significant decrease in GGT activity, the liver fat reduction in those who reduced their weight, and beneficial changes in the plasma lipid profile.
Collapse
Affiliation(s)
- Václav Šmíd
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Karel Dvořák
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Petr Šedivý
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Vít Kosek
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Martin Leníček
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Monika Dezortová
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Jana Hajšlová
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Milan Hájek
- Department of Diagnostic and Interventional RadiologyInstitute for Clinical and Experimental MedicinePragueCzech Republic
| | - Libor Vítek
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
- Institute of Medical Biochemistry and Laboratory DiagnosticsFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| | - Kamila Bechyňská
- Department of Food Analysis and NutritionUniversity of Chemistry and TechnologyPragueCzech Republic
| | - Radan Brůha
- Fourth Department of Internal MedicineFirst Faculty of Medicine and General University Hospital in PragueCharles UniversityPragueCzech Republic
| |
Collapse
|
8
|
Hu C, Li HW, Ke JQ, Yu XC, Zhao MY, Shi XY, Wu LJ, Tang XL, Xiong YH. Metabolic profiling of lysophosphatidylcholines in chlorpromazine hydrochloride- and N-acetyl- p-amino-phenoltriptolide-induced liver injured rats based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Hum Exp Toxicol 2022; 41:9603271221108320. [PMID: 35722787 DOI: 10.1177/09603271221108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chlorpromazine hydrochloride (CH) and N-acetyl-p-amino-phenoltriptolide (APAP) are typical acentral dopamine receptor antagonists and antipyretic analgesics in clinical applications, respectively. However, it has been reported that these 2 drugs could cause liver damage. Lysophosphatidylcholines (LPCs) have multiple physiological functions and are metabolized primarily in the liver, where it undergoes significant changes when the liver is damaged. In the study, 15 LPCs in the rat serum with CH- and APAP-induced liver injury were quantified based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, and multivariate statistical analyses including principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA) were combined to understand CH- and APAP-induced liver injury from the perspective of LPC metabolic profiling. The quantitative results showed that there were significant changes in 10 LPCs and 5 LPCs after CH- and APAP-administration, separately. The results of PCA and OPLS-DA indicated that CH- and APAP-induced liver injury could be well distinguished by the LPC metabolic profiling, and 7 LPCs and 1 LPC biomarkers that could characterize CH- and APAP-induced liver damage in turn had been screened. This study will not only provide a new perspective for the clinical diagnosis of CH- and APAP-induced liver injury, but also offer a reference for further study of their hepatotoxicity mechanisms.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Hong-Wei Li
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Jia-Qun Ke
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xue-Chun Yu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Mei-Yu Zhao
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xin-Yue Shi
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Lin-Jing Wu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xi-Lan Tang
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Yin-Hua Xiong
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| |
Collapse
|
9
|
Guo Y, Liao J, Liang Z, Balasubramanian B, Liu W. Hepatic lipid metabolomics in response to heat stress in local broiler chickens breed (Huaixiang chickens). Vet Med Sci 2021; 7:1369-1378. [PMID: 33639042 PMCID: PMC8294384 DOI: 10.1002/vms3.462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/10/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
High-temperature environment-induced heat stress (HS) is a hazard environmental element for animals, leading to dramatic changes in physiological and metabolic function. However, the metabolomic-level mechanisms underlying lipid metabolism in liver of slow-growing broilers are still obscure. The present study investigated the effects of HS on hepatic lipidomics in Chinese indigenous slow-growing broilers (Huaixiang chickens). The study includes two treatments, each treatment had 5 replicates with 4 broilers per cage, where a total of 40 eight-week-old female Huaixiang chickens (average initial body weight of 840.75 ± 20.79 g) were randomly divided into normal temperature (NT) and HS groups for 4 weeks, and the broilers of NT and HS groups were exposed to 21.3 ± 1.2℃ and 32.5 ± 1.4℃ respectively. The relative humidity of the two groups was maintained at 55%-70%. The liquid chromatography-mass spectrometry (LC-MS)-based metabolomics were conducted to evaluate the changes in hepatic lipidomics of broilers. The results showed that there were 12 differential metabolites between the two treatments. Compared with the NT group, HS group reduced the levers of hepatic phosphatidylcholine (PC) (16:0/16:0), PC (16:0/18:2), triglyceride (TG) (16:0/16:1/18:1), TG (18:0/18:1/20:4) (VIP > 1 and p < 0.05), while increased PC (18:1/20:3), PC (18:0/18:1), PC (18:1/18:1), PC (18:0/22:5), dimethyl-phosphatidyl ethanolamine (dMePE) (14:0/18:3), dMePE (18:0/18:1) and dMePE (16:0/20:3) levels (Variable Importance in the Projection; VIP > 1 and p < 0.05). In addition, according to the analysis of metabolic pathway, the pathways of linoleic acid, alpha-linolenic acid, glycerolipid and glycerophospholipid metabolism were involved in the effects of HS on hepatic lipid metabolism of broilers (p < 0.05). In conclusion, HS altered the hepatic lipid metabolism mainly through linoleic acid, alpha-linolenic acid, glycerolipid and glycerophospholipid metabolism pathway in indigenous broilers. These findings provided novel insights into the role of HS on hepatic lipidomics in Chinese indigenous broiler chickens.
Collapse
Affiliation(s)
- Yan Guo
- Department of Animal ScienceCollege of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangGuangdong ProvincePR China
| | - Jia‐Hao Liao
- Department of Animal ScienceCollege of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangGuangdong ProvincePR China
| | - Zi‐Long Liang
- Department of Animal ScienceCollege of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangGuangdong ProvincePR China
| | | | - Wen‐Chao Liu
- Department of Animal ScienceCollege of Coastal Agricultural SciencesGuangdong Ocean UniversityZhanjiangGuangdong ProvincePR China
| |
Collapse
|
10
|
Li Z, Shen W, Wu G, Qin C, Zhang Y, Wang Y, Song G, Xiao C, Zhang X, Deng G, Wang R, Wang X. The role of SAMM50 in non-alcoholic fatty liver disease: from genetics to mechanisms. FEBS Open Bio 2021; 11:1893-1906. [PMID: 33728819 PMCID: PMC8255833 DOI: 10.1002/2211-5463.13146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Non‐alcoholic fatty liver disease (NAFLD) is characterized by hepatic lipid accumulation. SAMM50 encodes Sam50, a mitochondrial outer membrane protein involved in the removal of reactive oxygen species, mitochondrial morphology and regulation of mitophagy. Certain single nucleotide polymorphisms of SAMM50 have been reported to be correlated with NAFLD. However, the contribution of SAMM50 polymorphisms to the occurrence and severity of fatty liver in the Chinese Han cohort has rarely been reported. Here, we investigated the association between SAMM50 polymorphisms (rs738491 and rs2073082) and NAFLD in a Chinese Han cohort, as well as the mechanistic basis of this association. Clinical information and blood samples were collected from 380 NAFLD cases and 380 normal subjects for the detection of genotypes and biochemical parameters. Carriers of the rs738491 T allele or rs2073082 G allele of SAMM50 exhibit increased susceptibility to NAFLD [odds ratio (OR) = 1.39; 95% confidence interval (CI) = 1.14–1.71, P = 0.001; OR = 1.31; 95% CI = 1.05–1.62, P = 0.016, respectively] and are correlated with elevated serum triglyceride, alanine aminotransferase and aspartate aminotransferase levels. The presence of the T allele (TT + CT) of rs738491 (P < 0.01) or G allele (AG + GG) of rs2073082 (P = 0.03) is correlated with the severity of fatty liver in the NAFLD cohort. In vitro studies indicated that SAMM50 gene polymorphisms decrease its expression and SAMM50 deficiency results in increased lipid accumulation as a result of a decrease in fatty acid oxidation. Overexpression of SAMM50 enhances fatty acid oxidation and mitigates intracellular lipid accumulation. Our results confirm the association between the SAMM50 rs738491 and rs2073082 polymorphisms and the risk of fatty liver in a Chinese cohort. The underlying mechanism may be related to decreased fatty acid oxidation caused by SAMM50 deficiency.
Collapse
Affiliation(s)
- Zuyin Li
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Weixing Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Gang Wu
- Department of General Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan, China
| | - Changjiang Qin
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yijie Zhang
- Department of Medical Oncology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yupeng Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Guohe Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University, Shanghai, China
| | - Chao Xiao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xin Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Guilong Deng
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Ruitao Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiaoliang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
11
|
Guo Y, Balasubramanian B, Zhao ZH, Liu WC. Heat stress alters serum lipid metabolism of Chinese indigenous broiler chickens-a lipidomics study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10707-10717. [PMID: 33098000 DOI: 10.1007/s11356-020-11348-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Heat stress (HS) by high-temperature environment reduced the production performance of poultry and caused losses to the breeding industry. The present study was conducted to investigate the effects of HS on serum lipidomics in Chinese indigenous slow-growing broiler chickens (Huaixiang chickens). A total of 40 8-week-old female Huaixiang chickens were randomly allocated to two groups, including normal temperature (NT, fed basal diet) and HS (fed basal diet), and each group consisted of five replicates with four birds per replicate. NT and HS groups were exposed to 21.3 ± 1.2 °C and 32.5 ± 1.4 °C for 4 weeks, respectively. Serum lipidomics in broilers was determined by liquid chromatography-mass spectrometry (LC-MS)-based metabolomics. The results indicated that there were significant differences in metabolic spectra between the groups, and a total of 17 differential metabolites were screened. Compared with NT group, HS group reduced the serum ceramide (cer) (d18:1/22:0), cer (d18:1/24:1), cer (d20:2/22:2), lyso-phosphatidylcholine (LPC) (18:0), phosphatidylcholine (PC) (18:0/20:4), PC (15:0/23:4), PC (18:0/22:6), PC (18:2/18:2), phosphatidylethanolamine (PE) (18:1/18:1), polyethylene terephthalate (PEt) (37:3/8:0), phosphatidylglycerol (PG) (32:1/16:2), phosphatidyl methyl ethanolamine (PMe) (19:3/13:0), PMe (26:1/9:0), sphingomyelin (SM) (d16:0/18:1), triglycerides (TG) (18:0/18:1/18:2), and TG (19:4/21:6/21:6) levels [variable importance in the projection (VIP > 1 and P < 0.05)], while HS group increased serum PC (17:0/17:0) content (VIP > 1 and P < 0.05). Also, metabolic pathway analysis showed that the pathways of glycerolphospholipid, linoleic acid and α-linolenic acid metabolism, and glycosylphosphatidylinositol (GPI)-anchored biosynthesis were changed (P < 0.05). In conclusion, HS led to the disorders of serum lipid metabolism in broilers, and mainly downregulated serum content of phospholipids. These findings provide novel insights into the effects of HS on serum lipidomics in indigenous slow-growing chickens.
Collapse
Affiliation(s)
- Yan Guo
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | | | - Zhi-Hui Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| |
Collapse
|
12
|
Mann JP, Pietzner M, Wittemans LB, Rolfe EDL, Kerrison ND, Imamura F, Forouhi NG, Fauman E, Allison ME, Griffin JL, Koulman A, Wareham NJ, Langenberg C. Insights into genetic variants associated with NASH-fibrosis from metabolite profiling. Hum Mol Genet 2020; 29:3451-3463. [PMID: 32720691 PMCID: PMC7116726 DOI: 10.1093/hmg/ddaa162] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/15/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Several genetic discoveries robustly implicate five single-nucleotide variants in the progression of non-alcoholic fatty liver disease to non-alcoholic steatohepatitis and fibrosis (NASH-fibrosis), including a recently identified variant in MTARC1. To better understand these variants as potential therapeutic targets, we aimed to characterize their impact on metabolism using comprehensive metabolomics data from two population-based studies. A total of 9135 participants from the Fenland study and 9902 participants from the EPIC-Norfolk cohort were included in the study. We identified individuals with risk alleles associated with NASH-fibrosis: rs738409C>G in PNPLA3, rs58542926C>T in TM6SF2, rs641738C>T near MBOAT7, rs72613567TA>T in HSD17B13 and rs2642438A>G in MTARC1. Circulating levels of 1449 metabolites were measured using targeted and untargeted metabolomics. Associations between NASH-fibrosis variants and metabolites were assessed using linear regression. The specificity of variant-metabolite associations were compared to metabolite associations with ultrasound-defined steatosis, gene variants linked to liver fat (in GCKR, PPP1R3B and LYPLAL1) and gene variants linked to cirrhosis (in HFE and SERPINA1). Each NASH-fibrosis variant demonstrated a specific metabolite profile with little overlap (8/97 metabolites) comprising diverse aspects of lipid metabolism. Risk alleles in PNPLA3 and HSD17B13 were both associated with higher 3-methylglutarylcarnitine and three variants were associated with lower lysophosphatidylcholine C14:0. The risk allele in MTARC1 was associated with higher levels of sphingomyelins. There was no overlap with metabolites that associated with HFE or SERPINA1 variants. Our results suggest a link between the NASH-protective variant in MTARC1 to the metabolism of sphingomyelins and identify distinct molecular patterns associated with each of the NASH-fibrosis variants under investigation.
Collapse
Affiliation(s)
- Jake P Mann
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Maik Pietzner
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Laura B Wittemans
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Emmanuela De Lucia Rolfe
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Nicola D Kerrison
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Fumiaki Imamura
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Nita G Forouhi
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Eric Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA 02142, USA
| | - Michael E Allison
- Liver Unit, Department of Medicine, Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QQ, UK
| | - Jules L Griffin
- MRC Human Nutrition Research, University of Cambridge, Cambridge CB1 9NL, UK
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Albert Koulman
- MRC Human Nutrition Research, University of Cambridge, Cambridge CB1 9NL, UK
- Department of Biochemistry, Cambridge Systems Biology Centre, University of Cambridge, Cambridge CB2 1GA, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge CB2 0SL, UK
| |
Collapse
|