1
|
Gregory DA, Fricker ATR, Mitrev P, Ray M, Asare E, Sim D, Larpnimitchai S, Zhang Z, Ma J, Tetali SSV, Roy I. Additive Manufacturing of Polyhydroxyalkanoate-Based Blends Using Fused Deposition Modelling for the Development of Biomedical Devices. J Funct Biomater 2023; 14:jfb14010040. [PMID: 36662087 PMCID: PMC9865795 DOI: 10.3390/jfb14010040] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/26/2022] [Accepted: 12/30/2022] [Indexed: 01/12/2023] Open
Abstract
In the last few decades Additive Manufacturing has advanced and is becoming important for biomedical applications. In this study we look at a variety of biomedical devices including, bone implants, tooth implants, osteochondral tissue repair patches, general tissue repair patches, nerve guidance conduits (NGCs) and coronary artery stents to which fused deposition modelling (FDM) can be applied. We have proposed CAD designs for these devices and employed a cost-effective 3D printer to fabricate proof-of-concept prototypes. We highlight issues with current CAD design and slicing and suggest optimisations of more complex designs targeted towards biomedical applications. We demonstrate the ability to print patient specific implants from real CT scans and reconstruct missing structures by means of mirroring and mesh mixing. A blend of Polyhydroxyalkanoates (PHAs), a family of biocompatible and bioresorbable natural polymers and Poly(L-lactic acid) (PLLA), a known bioresorbable medical polymer is used. Our characterisation of the PLA/PHA filament suggest that its tensile properties might be useful to applications such as stents, NGCs, and bone scaffolds. In addition to this, the proof-of-concept work for other applications shows that FDM is very useful for a large variety of other soft tissue applications, however other more elastomeric MCL-PHAs need to be used.
Collapse
|
2
|
The Allogenic Dental Pulp Transplantation from Son/Daughter to Mother/Father: A Follow-Up of Three Clinical Cases. Bioengineering (Basel) 2022; 9:bioengineering9110699. [DOI: 10.3390/bioengineering9110699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
The study investigated allogenic pulp transplantation as an innovative method of regenerative endodontic therapy. Three patients were selected for the endodontic treatment of single-root teeth, who also had a son/daughter with deciduous teeth or third molars scheduled for extraction. Receptor teeth were endodontically instrumented and irrigated using a tri-antibiotic solution. During the transplant procedures, the teeth from the son/daughter were extracted, sectioned, and the pulp was carefully removed. The harvested pulp from the donor was inserted into the root canal of the host tooth (father/mother), followed by direct pulp capping and resin composite restoration. The teeth were followed-up with for 2 years and were surveyed with computed tomography, the electric pulp vitality test, and Doppler ultrasound examination. At the 6-month follow-up, positive pulp vitality and the formation of periapical lesions were verified in cases 1 and 2. Case 3 showed remarkable periapical radiolucency before transplantation, but after 1 year, such lesions disappeared and there was positive vitality. All teeth were revascularized as determined by Doppler imaging after 2 years with no signs of endodontic/periodontal radiolucency. In conclusion, although this was a case series with only three patients and four teeth treated, it is possible to suppose that this allogenic pulp transplantation protocol could represent a potential strategy for pulp revitalization in specific endodontic cases.
Collapse
|
3
|
Al-Khanati NM, Albassal A, Kara Beit Z. Unusual Indications of Teeth Transplantation: A Literature Review. Cureus 2022; 14:e29030. [PMID: 36237754 PMCID: PMC9552854 DOI: 10.7759/cureus.29030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2022] [Indexed: 11/11/2022] Open
Abstract
Dental implants are one of the best valid tooth replacement options, though these are not always appropriate in growing young patients. Tooth autotransplantation can be indicated then. However, this is not the only scenario where dental transplantation can be indicated. This comprehensive literature review discusses a wide range of unusual indications of dental transplantation as reported throughout the medical literature. Surprisingly, these indications include management of some developmental dental anomalies, hypodontia, oroantral communications, alveolar clefts, deficient alveolar ridges, ectopic teeth, and maxillofacial injuries. Limited high-quality evidence in this field regarding most of these unusual indications warrants further research of high-quality design.
Collapse
Affiliation(s)
- Nuraldeen M Al-Khanati
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Damascus University, Damascus, SYR
| | - Ahmad Albassal
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Damascus University, Damascus, SYR
| | - Zafin Kara Beit
- Department of Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Damascus University, Damascus, SYR
| |
Collapse
|
4
|
Main Applications and Recent Research Progresses of Additive Manufacturing in Dentistry. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5530188. [PMID: 35252451 PMCID: PMC8894006 DOI: 10.1155/2022/5530188] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 12/16/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022]
Abstract
In recent ten years, with the fast development of digital and engineering manufacturing technology, additive manufacturing has already been more and more widely used in the field of dentistry, from the first personalized surgical guides to the latest personalized restoration crowns and root implants. In particular, the bioprinting of teeth and tissue is of great potential to realize organ regeneration and finally improve the life quality. In this review paper, we firstly presented the workflow of additive manufacturing technology. Then, we summarized the main applications and recent research progresses of additive manufacturing in dentistry. Lastly, we sketched out some challenges and future directions of additive manufacturing technology in dentistry.
Collapse
|
5
|
Feitosa VP, Mota MNG, Vieira LV, de Paula DM, Gomes LLR, Solheiro LKR, Aguiar Neto MAD, Carvalho DAL, Silvestre FA. Dental Pulp Autotransplantation: A New Modality of Endodontic Regenerative Therapy-Follow-Up of 3 Clinical Cases. J Endod 2021; 47:1402-1408. [PMID: 34175322 DOI: 10.1016/j.joen.2021.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
The aim of this study was to develop a novel method of endodontic therapy, which we refer to as dental pulp autotransplantation. Three patients (2 males and 1 female) were selected for endodontic treatment of a uniradicular premolar and extraction of a third molar (without odontosection). Electric assessment of pulp vitality and computed tomographic imaging were undertaken followed by endodontic access and instrumentation using triantibiotic solution for irrigation in the host tooth. A few minutes before the transplant procedure, the third molar was extracted, the tooth was sectioned with a diamond blade in a low-speed handpiece, and the pulp was carefully removed. After premolar instrumentation, the harvested and preserved pulp tissue was reinserted into the root canal followed by direct pulp capping performed using Biodentine (Septodont, Saint-Maur-des-Fossés, France), a liner of resin-modified glass ionomer cement and composite resin restoration. The teeth were followed up for at least 12 months after the procedures and were analyzed using computed tomographic imaging, electric pulp vitality testing, and Doppler ultrasound examination. At the 3- and 6-month follow-ups, positive pulp vitality and regression of periapical lesions were verified. After 9-12 months, all teeth were revascularized as determined by Doppler imaging, and the tooth vitality was reestablished with no signs of endodontic/periodontal radiolucency or complications. Within the limitations of the study, considering that it was a case series with only 3 patients, we described a highly innovative procedure of pulp autotransplantation, which appears to be feasible, highlighting the potential for clinical application of pulp regeneration using this new modality of endodontic therapy.
Collapse
|
6
|
Selim OA, Lakhani S, Midha S, Mosahebi A, Kalaskar DM. Three-Dimensional Engineered Peripheral Nerve: Toward a New Era of Patient-Specific Nerve Repair Solutions. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:295-335. [PMID: 33593147 DOI: 10.1089/ten.teb.2020.0355] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reconstruction of peripheral nerve injuries (PNIs) with substance loss remains challenging because of limited treatment solutions and unsatisfactory patient outcomes. Currently, nerve autografting is the first-line management choice for bridging critical-sized nerve defects. The procedure, however, is often complicated by donor site morbidity and paucity of nerve tissue, raising a quest for better alternatives. The application of other treatment surrogates, such as nerve guides, remains questionable, and it is inefficient in irreducible nerve gaps. More importantly, these strategies lack customization for personalized patient therapy, which is a significant drawback of these nerve repair options. This negatively impacts the fascicle-to-fascicle regeneration process, critical to restoring the physiological axonal pathway of the disrupted nerve. Recently, the use of additive manufacturing (AM) technologies has offered major advancements to the bioengineering solutions for PNI therapy. These techniques aim at reinstating the native nerve fascicle pathway using biomimetic approaches, thereby augmenting end-organ innervation. AM-based approaches, such as three-dimensional (3D) bioprinting, are capable of biofabricating 3D-engineered nerve graft scaffolds in a patient-specific manner with high precision. Moreover, realistic in vitro models of peripheral nerve tissues that represent the physiologically and functionally relevant environment of human organs could also be developed. However, the technology is still nascent and faces major translational hurdles. In this review, we spotlighted the clinical burden of PNIs and most up-to-date treatment to address nerve gaps. Next, a summarized illustration of the nerve ultrastructure that guides research solutions is discussed. This is followed by a contrast of the existing bioengineering strategies used to repair peripheral nerve discontinuities. In addition, we elaborated on the most recent advances in 3D printing and biofabrication applications in peripheral nerve modeling and engineering. Finally, the major challenges that limit the evolution of the field along with their possible solutions are also critically analyzed.
Collapse
Affiliation(s)
- Omar A Selim
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Saad Lakhani
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Swati Midha
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi, India
| | - Afshin Mosahebi
- Department of Plastic Surgery, Royal Free Hospital, University College London (UCL), London, United Kingdom
| | - Deepak M Kalaskar
- Department of Surgical Biotechnology, Division of Surgery and Interventional Sciences, Royal Free Hospital, University College London (UCL), London, United Kingdom.,Department of Surgical Biotechnology, Institute of Orthopaedics and Musculoskeletal Science, Royal National Orthopaedic Hospital, University College London (UCL), Stanmore, United Kingdom
| |
Collapse
|
7
|
Print and Try Technique: 3D-Printing of Teeth with Complex Anatomy a Novel Endodontic Approach. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this report is to evaluate the applicability of a novel Print and Try technique in the presence of aberrant endodontic anatomies and to achieve a predictable treatment with improved outcome. According to guidelines, cone beam computed tomography (CBCT) is recommended in the presence of complex anatomies. The volumes were utilized to produce a stereo lithographic (STL) file, from which a 3D-plastic tooth model including a hollow root canal system was obtained. The 3D-patient-specific model facilitates the treatment planning and the trial of therapeutic approaches. Using a transparent material, all the treatment steps could be directly visualized. Subsequently, endodontic therapy could be performed in vivo with reduced operating time and with a better overview. Clinicians benefit from the Print and Try technique when facing a complicated root canal system with reduced stress and higher chances of success. In aberrant endodontic anatomies, the use of a transparent 3D plastic model, derived from the CBCT dicom, provides an exact preview of clinical challenges that will be met intra-operatively. A patient centered tailored approach to shaping, cleaning, and filling strategies can be applied.
Collapse
|