1
|
Isik FI, Thomson S, Cueto JF, Spathos J, Breit SN, Tsai VWW, Brown DA, Finney CA. A systematic review of the neuroprotective role and biomarker potential of GDF15 in neurodegeneration. Front Immunol 2024; 15:1514518. [PMID: 39737171 PMCID: PMC11682991 DOI: 10.3389/fimmu.2024.1514518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Neurodegeneration is characteristically multifaceted, with limited therapeutic options. One of the chief pathophysiological mechanisms driving these conditions is neuroinflammation, prompting increasing clinical interest in immunomodulatory agents. Growth differentiation factor 15 (GDF15; previously also called macrophage inhibitory cytokine-1 or MIC-1), an anti-inflammatory cytokine with established neurotrophic properties, has emerged as a promising therapeutic agent in recent decades. However, methodological challenges and the delayed identification of its specific receptor GFRAL have hindered research progress. This review systematically examines literature about GDF15 in neurodegenerative diseases and neurotrauma. The evidence collated in this review indicates that GDF15 expression is upregulated in response to neurodegenerative pathophysiology and increasing its levels in preclinical models typically improves outcomes. Key knowledge gaps are addressed for future investigations to foster a more comprehensive understanding of the neuroprotective effects elicited by GDF15.
Collapse
Affiliation(s)
- Finula I. Isik
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Shannon Thomson
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - John F. Cueto
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Jessica Spathos
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Samuel N. Breit
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Vicky W. W. Tsai
- St. Vincent’s Centre for Applied Medical Research, St. Vincent’s Hospital and Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - David A. Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Western Sydney Local Health District, Institute for Clinical Pathology and Medical Research, NSW Health Pathology, Sydney, NSW, Australia
| | - Caitlin A. Finney
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
2
|
Miyaue N, Yabe H, Nagai M. Serum GDF-15 Levels in Patients with Parkinson's Disease, Progressive Supranuclear Palsy, and Multiple System Atrophy. Neurol Int 2023; 15:1044-1051. [PMID: 37755357 PMCID: PMC10535128 DOI: 10.3390/neurolint15030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Serum growth differentiation factor 15 (GDF-15) levels are elevated in patients with Parkinson's disease (PD) and may help differentiate these patients from healthy individuals. We aimed to clarify whether serum GDF-15 levels can help differentiate PD from atypical parkinsonian syndromes and determine the association between serum GDF-15 levels and clinical parameters. We prospectively enrolled 46, 15, and 12 patients with PD, progressive supranuclear palsy (PSP), and multiple system atrophy (MSA), respectively. The serum GDF-15 level in patients with PD (1394.67 ± 558.46 pg/mL) did not differ significantly from that in patients with PSP (1491.27 ± 620.78 pg/mL; p = 0.573) but was significantly higher than that in patients with MSA (978.42 ± 334.66 pg/mL; p = 0.017). Serum GDF-15 levels were positively correlated with age in patients with PD (r = 0.458; p = 0.001); PSP (r = 0.565; p = 0.028); and MSA (r = 0.708; p = 0.010). After accounting for age differences, serum GDF-15 levels did not differ significantly between patients with PD and MSA (p = 0.114). Thus, age has a strong influence on serum GDF-15 levels, which may not differ significantly between patients with PD and atypical parkinsonian syndromes such as PSP and MSA.
Collapse
Affiliation(s)
- Noriyuki Miyaue
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine, Ehime University, Tohon 791-0295, Ehime, Japan;
- Department of Neurology, Saiseikai Matsuyama Hospital, Matsuyama 791-8026, Ehime, Japan;
| | - Hayato Yabe
- Department of Neurology, Saiseikai Matsuyama Hospital, Matsuyama 791-8026, Ehime, Japan;
| | - Masahiro Nagai
- Department of Clinical Pharmacology and Therapeutics, Graduate School of Medicine, Ehime University, Tohon 791-0295, Ehime, Japan;
| |
Collapse
|
3
|
Xue XH, Tao LL, Su DQ, Guo CJ, Liu H. Diagnostic utility of GDF15 in neurodegenerative diseases: A systematic review and meta-analysis. Brain Behav 2022; 12:e2502. [PMID: 35068064 PMCID: PMC8865151 DOI: 10.1002/brb3.2502] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/29/2021] [Accepted: 01/02/2022] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION GDF15 may be a potential biomarker for neurodegenerative diseases. In this analysis, we aimed to quantitative analysis the levels of GDF15 in patients with neurological diseases and in health control, and then to determine its potential diagnostic utility. METHODS Two researchers separately conducted a systematic search of the relevant studies up to January 2021 in Embase, PubMed, and Web of Science. Effect sizes were estimated to use the standardized mean difference (SMD) with 95% confidence interval (CI). Sensitivity and specificity were calculated by the summary receiver operating characteristics curve (SROC) method. The sensitivity analysis was performed by the "one-in/one-out" approach. Considering the considerable heterogeneity among studies, random-effects model was used for the meta-analysis investigation. RESULTS A total of eight articles were included in this meta-analysis and systematic review. The pooled results of the random effect model indicated GDF15 levels were significantly higher in patients with neurodegenerative disease than healthy people (SMD = 0.92, 95% CI: 0.44-1.40, Z = 3.75, p < 0.001). Sensitivity and specificity of biomarker of GDF15 were 0.90 (95% CI: 0.75-0.97), 0.77 (95% CI: 0.67-0.65), and AUC = 0.87 (95% CI: 0.84-0.90), respectively. CONCLUSIONS GDF15 levels were higher in patients with neurodegenerative disease than healthy people. And serum levels of GDF15 were a better marker for diagnostic utility of neurodegenerative disease.
Collapse
Affiliation(s)
- Xin-Hong Xue
- Department of Neurology, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng People's Hospital, Liaocheng, China
| | - Lin-Lin Tao
- Department of Neurology, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng People's Hospital, Liaocheng, China
| | - Dao-Qing Su
- Department of Neurosurgery, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng People's Hospital, Liaocheng, China
| | - Cun-Ju Guo
- Department of Neurology, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng People's Hospital, Liaocheng, China
| | - Hong Liu
- Department of Neurology, Liaocheng Hospital Affiliated to Shandong First Medical University, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
4
|
Wu PF, Zhang XH, Zhou P, Yin R, Zhou XT, Zhang W. Growth Differentiation Factor 15 Is Associated With Alzheimer's Disease Risk. Front Genet 2021; 12:700371. [PMID: 34484296 PMCID: PMC8414585 DOI: 10.3389/fgene.2021.700371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/27/2021] [Indexed: 12/03/2022] Open
Abstract
Background Previous observational studies have suggested that associations exist between growth differentiation factor 15 (GDF-15) and neurodegenerative diseases. We aimed to investigate the causal relationships between GDF-15 and Alzheimer’s disease (AD), Parkinson’s disease (PD), and amyotrophic lateral sclerosis (ALS). Methods Using summary-level datasets from genome-wide association studies of European ancestry, we performed a two-sample Mendelian randomization (MR) study. Genetic variants significantly associated (p < 5 × 10–8) with GDF-15 were selected as instrumental variables (n = 5). An inverse-variance weighted method was implemented as the primary MR approach, while weighted median, MR–Egger, leave-one-out analysis, and Cochran’s Q-test were conducted as sensitivity analyses. All analyses were performed using R 3.6.1 with relevant packages. Results MR provided evidence for the association of elevated GDF-15 levels with a higher risk of AD (odds ratio = 1.14; 95% confidence interval, 1.04–1.24; p = 0.004). In the reverse direction, Mendelian randomization suggested no causal effect of genetically proxied risk of AD on circulating GDF-15 (p = 0.450). The causal effects of GDF-15 on PD (p = 0.597) or ALS (p = 0.120) were not identified, and the MR results likewise did not support the association of genetic liability to PD or ALS with genetically predicted levels of GDF-15. No evident heterogeneity or horizontal pleiotropy was revealed by multiple sensitivity analyses. Conclusion We highlighted the role of GDF-15 in AD as altogether a promising diagnostic marker and a therapeutic target.
Collapse
Affiliation(s)
- Peng-Fei Wu
- Hunan Key Laboratory of Animal Models for Human Diseases, Department of Laboratory Animals, Third Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Xing-Hao Zhang
- Department of Ultrasound, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ping Zhou
- Department of Ultrasound, Third Xiangya Hospital, Central South University, Changsha, China
| | - Rui Yin
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, United States
| | - Xiao-Ting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, United States
| | - Wan Zhang
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States.,Department of Biology, College of Arts and Sciences, Boston University, Boston, MA, United States
| |
Collapse
|