1
|
Maiti A, Mondal S, Choudhury S, Bandopadhyay A, Mukherjee S, Sikdar N. Oncometabolites in pancreatic cancer: Strategies and its implications. World J Exp Med 2024; 14:96005. [PMID: 39713078 PMCID: PMC11551704 DOI: 10.5493/wjem.v14.i4.96005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/24/2024] [Accepted: 09/14/2024] [Indexed: 10/31/2024] Open
Abstract
Pancreatic cancer (PanCa) is a catastrophic disease, being third lethal in both the genders around the globe. The possible reasons are extreme disease invasiveness, highly fibrotic and desmoplastic stroma, dearth of confirmatory diagnostic approaches and resistance to chemotherapeutics. This inimitable tumor microenvironment (TME) or desmoplasia with excessive extracellular matrix accumulation, create an extremely hypovascular, hypoxic and nutrient-deficient zone inside the tumor. To survive, grow and proliferate in such tough TME, pancreatic tumor and stromal cells transform their metabolism. Transformed glucose, glutamine, fat, nucleotide metabolism and inter-metabolite communication between tumor and TME in synergism, impart therapy resistance, and immunosuppression in PanCa. Thus, a finer knowledge of altered metabolism would uncover its metabolic susceptibilities. These unique metabolic targets may help to device novel diagnostic/prognostic markers and therapeutic strategies for better management of PanCa. In this review, we sum up reshaped metabolic pathways in PanCa to formulate detection and remedial strategies of this devastating disease.
Collapse
Affiliation(s)
- Arunima Maiti
- Suraksha Diagnostics Pvt Ltd, Newtown, Rajarhat, Kolkata 700156, West Bengal, India
| | - Susmita Mondal
- Department of Zoology, Diamond Harbour Women’s University, Diamond Harbour 743368, West Bengal, India
| | - Sounetra Choudhury
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
| | | | - Sanghamitra Mukherjee
- Department of Pathology, RG Kar Medical College and Hospital, Kolkata 700004, West Bengal, India
| | - Nilabja Sikdar
- Human Genetics Unit, Indian Statistical Institute, Kolkata 700108, West Bengal, India
- Scientist G, Estuarine and Coastal Studies Foundation, Howrah 711101, West Bengal, India
| |
Collapse
|
2
|
Tripathi S, Gupta E, Galande S. Statins as anti-tumor agents: A paradigm for repurposed drugs. Cancer Rep (Hoboken) 2024; 7:e2078. [PMID: 38711272 PMCID: PMC11074523 DOI: 10.1002/cnr2.2078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Statins, frequently prescribed medications, work by inhibiting the rate-limiting enzyme HMG-CoA reductase (HMGCR) in the mevalonate pathway to reduce cholesterol levels. Due to their multifaceted benefits, statins are being adapted for use as cost-efficient, safe and effective anti-cancer treatments. Several studies have shown that specific types of cancer are responsive to statin medications since they rely on the mevalonate pathway for their growth and survival. RECENT FINDINGS Statin are a class of drugs known for their potent inhibition of cholesterol production and are typically prescribed to treat high cholesterol levels. Nevertheless, there is growing interest in repurposing statins for the treatment of malignant neoplastic diseases, often in conjunction with chemotherapy and radiotherapy. The mechanism behind statin treatment includes targeting apoptosis through the BCL2 signaling pathway, regulating the cell cycle via the p53-YAP axis, and imparting epigenetic modulations by altering methylation patterns on CpG islands and histone acetylation by downregulating DNMTs and HDACs respectively. Notably, some studies have suggested a potential chemo-preventive effect, as decreased occurrence of tumor relapse and enhanced survival rate were reported in patients undergoing long-term statin therapy. However, the definitive endorsement of statin usage in cancer therapy hinges on population based clinical studies with larger patient cohorts and extended follow-up periods. CONCLUSIONS The potential of anti-cancer properties of statins seems to reach beyond their influence on cholesterol production. Further investigations are necessary to uncover their effects on cancer promoting signaling pathways. Given their distinct attributes, statins might emerge as promising contenders in the fight against tumorigenesis, as they appear to enhance the efficacy and address the limitations of conventional cancer treatments.
Collapse
Affiliation(s)
- Sneha Tripathi
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Ekta Gupta
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
| | - Sanjeev Galande
- Laboratory of Chromatin Biology & EpigeneticsIndian Institute of Science Education and ResearchPuneIndia
- Centre of Excellence in Epigenetics, Department of Life SciencesShiv Nadar Institution of EminenceGautam Buddha NagarIndia
| |
Collapse
|
3
|
Ou Y, Chu GCY, Lyu J, Yin L, Lim A, Zhai N, Cui X, Lewis MS, Edderkaoui M, Pandol SJ, Wang R, Zhang Y. Overcoming Resistance in Prostate Cancer Therapy Using a DZ-Simvastatin Conjugate. Mol Pharm 2024; 21:873-882. [PMID: 38229228 PMCID: PMC11025579 DOI: 10.1021/acs.molpharmaceut.3c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Prostate cancer (PC), particularly its metastatic castration-resistant form (mCRPC), is a leading cause of cancer-related deaths among men in the Western world. Traditional systemic treatments, including hormonal therapy and chemotherapy, offer limited effectiveness due to tumors' inherent resistance to these therapies. Moreover, they often come with significant side effects. We have developed a delivery method using a tumor-cell-specific heptamethine carbocyanine dye (DZ) designed to transport therapeutic agents directly to tumor cells. This research evaluated simvastatin (SIM) as the antitumor payload because of its demonstrated chemopreventive effects on human cancers and its well-documented safety profile. We designed and synthesized a DZ-SIM conjugate for tumor cell targeting. PC cell lines and xenograft tumor models were used to assess tumor-cell targeting specificity and killing activity and to investigate the corresponding mechanisms. DZ-SIM treatment effectively killed PC cells regardless of their androgen receptor status or inherent therapeutic resistance. The conjugate targeted and suppressed xenograft tumor formation without harming normal cells of the host. In cancer cells, DZ-SIM was enriched in subcellular organelles, including mitochondria, where the conjugate formed adducts with multiple proteins and caused the loss of transmembrane potential, promoting cell death. The DZ-SIM specifically targets PC cells and their mitochondria, resulting in a loss of mitochondrial function and cell death. With a unique subcellular targeting strategy, the conjugate holds the potential to outperform existing chemotherapeutic drugs. It presents a novel strategy to circumvent therapeutic resistance, offering a more potent treatment for mCRPC.
Collapse
Affiliation(s)
- Yan Ou
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Gina Chia-Yi Chu
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Ji Lyu
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Liyuan Yin
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Adrian Lim
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Ning Zhai
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Michael S. Lewis
- Department of Pathology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, United States
| | - Mouad Edderkaoui
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Stephen J. Pandol
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Ruoxiang Wang
- Department of Medicine, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
- Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| | - Yi Zhang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048, United States
| |
Collapse
|
4
|
Associations of Overall Survival with Geriatric Nutritional Risk Index in Patients with Advanced Pancreatic Cancer. Nutrients 2022; 14:nu14183800. [PMID: 36145174 PMCID: PMC9500973 DOI: 10.3390/nu14183800] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Nutritional assessment is critical in cancer care to maintain quality of life and improve survival. The Geriatric Nutritional Risk Index (GNRI) may be a practical tool to assess nutritional status and predict survival. This study aimed to examine survival using GNRI in advanced-stage pancreatic cancer (PC). The retrospective analysis used data of patients with stage III or IV PC. Inclusion criteria: age > 18 and hospital admission for at least three days at or following diagnosis between 2014 and 2017. Data collected: demographics, albumin levels, BMI and weight. Days between the first and last admission, median survival and GNRI scores calculated. Patients categorized into groups: any nutritional risk (GNRI ≤ 98) and no nutritional risk (GNRI > 98). 102 patients had a median survival of 87.5 days and mean GNRI of 98.7. Patients surviving longer than 90 days showed higher mean weight (p = 0.0128), albumin (p = 0.0002) and BMI (p = 0.0717) at the first admission. Mean survival days for patients at any nutritional risk were 110 days compared to 310 days for no nutritional risk (p = 0.0002). GNRI score at first admission after diagnosis is associated with survival. It is vital to monitor nutritional status using weight and albumin to promote increased survival from diagnosis.
Collapse
|
5
|
Miyaki C, Lynch LM. An Update on Common Pharmaceuticals in the Prevention of Pancreatic Cancer. Cureus 2022; 14:e25496. [PMID: 35800820 PMCID: PMC9246430 DOI: 10.7759/cureus.25496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 01/03/2023] Open
Abstract
In this review, we aim to update readers about the most recent studies on common pharmaceuticals and their association with pancreatic cancer risk. The use of prophylactic aspirin, metformin, beta-blockers, and statins has been studied in the past but showed inconclusive results in the reduction of pancreatic cancer incidence. However, in recent studies, these medications along with combination therapy of aspirin and metformin were found to have a more significant association with decreasing risk. Given the poor prognosis of pancreatic cancer despite treatment, medication prophylaxis prevention should be considered. In this review, we hope to encourage future case-control or prospective studies on common medications that have shown great potential in delaying pancreatic cancer development.
Collapse
|