1
|
Haffner-Luntzer M, Weber B, Morioka K, Lackner I, Fischer V, Bahney C, Ignatius A, Kalbitz M, Marcucio R, Miclau T. Altered early immune response after fracture and traumatic brain injury. Front Immunol 2023; 14:1074207. [PMID: 36761764 PMCID: PMC9905106 DOI: 10.3389/fimmu.2023.1074207] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
Introduction Clinical and preclinical data suggest accelerated bone fracture healing in subjects with an additional traumatic brain injury (TBI). Mechanistically, altered metabolism and neuro-endocrine regulations have been shown to influence bone formation after combined fracture and TBI, thereby increasing the bone content in the fracture callus. However, the early inflammatory response towards fracture and TBI has not been investigated in detail so far. This is of great importance, since the early inflammatory phase of fracture healing is known to be essential for the initiation of downstream regenerative processes for adequate fracture repair. Methods Therefore, we analyzed systemic and local inflammatory mediators and immune cells in mice which were exposed to fracture only or fracture + TBI 6h and 24h after injury. Results We found a dysregulated systemic immune response and significantly fewer neutrophils and mast cells locally in the fracture hematoma. Further, local CXCL10 expression was significantly decreased in the animals with combined trauma, which correlated significantly with the reduced mast cell numbers. Discussion Since mast cells and mast cell-derived CXCL10 have been shown to increase osteoclastogenesis, the reduced mast cell numbers might contribute to higher bone content in the fracture callus of fracture + TBI mice due to decreased callus remodeling.
Collapse
Affiliation(s)
- Melanie Haffner-Luntzer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany.,Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Birte Weber
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany.,Department of Trauma-, Hand- and Reconstructive Surgery, University Hospital Frankfurt, Goethe-University, Frankfurt am Main, Germany
| | - Kazuhito Morioka
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurological Surgery, Weill Institute for Neurosciences, Brain and Spinal Injury Center (BASIC), University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Ina Lackner
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Verena Fischer
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Chelsea Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,Steadman Phillipon Research Institute, Vail, CO, United States
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University Medical Center Ulm, Ulm, Germany
| | - Miriam Kalbitz
- Department of Traumatology, Hand-, Plastic- and Reconstructive Surgery, University Medical Center Ulm, Ulm, Germany
| | - Ralph Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Wang S, Tian J, Wang J, Liu S, Ke L, Shang C, Yang J, Wang L. Identification of the Biomarkers and Pathological Process of Heterotopic Ossification: Weighted Gene Co-Expression Network Analysis. Front Endocrinol (Lausanne) 2020; 11:581768. [PMID: 33391181 PMCID: PMC7774600 DOI: 10.3389/fendo.2020.581768] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/12/2020] [Indexed: 12/19/2022] Open
Abstract
Heterotopic ossification (HO) is the formation of abnormal mature lamellar bone in extra-skeletal sites, including soft tissues and joints, which result in high rates of disability. The understanding of the mechanism of HO is insufficient. The aim of this study was to explore biomarkers and pathological processes in HO+ samples. The gene expression profile GSE94683 was downloaded from the Gene Expression Omnibus database. Sixteen samples from nine HO- and seven HO+ subjects were analyzed. After data preprocessing, 3,529 genes were obtained for weighted gene co-expression network analysis. Highly correlated genes were divided into 13 modules. Finally, the cyan and purple modules were selected for further study. Gene ontology functional annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment indicated that the cyan module was enriched in a variety of components, including protein binding, membrane, nucleoplasm, cytosol, poly(A) RNA binding, biosynthesis of antibiotics, carbon metabolism, endocytosis, citrate cycle, and metabolic pathways. In addition, the purple module was enriched in cytosol, mitochondrion, protein binding, structural constituent of ribosome, rRNA processing, oxidative phosphorylation, ribosome, and non-alcoholic fatty liver disease. Finally, 10 hub genes in the cyan module [actin related protein 3 (ACTR3), ADP ribosylation factor 4 (ARF4), progesterone receptor membrane component 1 (PGRMC1), ribosomal protein S23 (RPS23), mannose-6-phosphate receptor (M6PR), WD repeat domain 12 (WDR12), synaptosome associated protein 23 (SNAP23), actin related protein 2 (ACTR2), siah E3 ubiquitin protein ligase 1 (SIAH1), and glomulin (GLMN)] and 2 hub genes in the purple module [proteasome 20S subunit alpha 3 (PSMA3) and ribosomal protein S27 like (RPS27L)] were identified. Hub genes were validated through quantitative real-time polymerase chain reaction. In summary, 12 hub genes were identified in two modules that were associated with HO. These hub genes could provide new biomarkers, therapeutic ideas, and targets in HO.
Collapse
|
3
|
Differential fracture response to traumatic brain injury suggests dominance of neuroinflammatory response in polytrauma. Sci Rep 2019; 9:12199. [PMID: 31434912 PMCID: PMC6704103 DOI: 10.1038/s41598-019-48126-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/24/2019] [Indexed: 12/16/2022] Open
Abstract
Polytraumatic injuries, specifically long bone fracture and traumatic brain injury (TBI), frequently occur together. Clinical observation has long held that TBI can accelerate fracture healing, yet the complexity and heterogeneity of these injuries has produced conflicting data with limited information on underlying mechanisms. We developed a murine polytrauma model with TBI and fracture to evaluate healing in a controlled system. Fractures were created both contralateral and ipsilateral to the TBI to test whether differential responses of humoral and/or neuronal systems drove altered healing patterns. Our results show increased bone formation after TBI when injuries occur contralateral to each other, rather than ipsilateral, suggesting a role of the nervous system based on the crossed neuroanatomy of motor and sensory systems. Analysis of the humoral system shows that blood cell counts and inflammatory markers are differentially modulated by polytrauma. A data-driven multivariate analysis integrating all outcome measures showed a distinct pathological state of polytrauma and co-variations between fracture, TBI and systemic markers. Taken together, our results suggest that a contralateral bone fracture and TBI alter the local neuroinflammatory state to accelerate early fracture healing. We believe applying a similar data-driven approach to clinical polytrauma may help to better understand the complicated pathophysiological mechanisms of healing.
Collapse
|
4
|
Crowgey EL, Wyffels JT, Osborn PM, Wood TT, Edsberg LE. A Systems Biology Approach for Studying Heterotopic Ossification: Proteomic Analysis of Clinical Serum and Tissue Samples. GENOMICS, PROTEOMICS & BIOINFORMATICS 2018; 16:212-220. [PMID: 30010035 PMCID: PMC6076384 DOI: 10.1016/j.gpb.2018.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/28/2018] [Accepted: 04/16/2018] [Indexed: 11/28/2022]
Abstract
Heterotopic ossification (HO) refers to the abnormal formation of bone in soft tissue. Although some of the underlying processes of HO have been described, there are currently no clinical tests using validated biomarkers for predicting HO formation. As such, the diagnosis is made radiographically after HO has formed. To identify potential and novel biomarkers for HO, we used isobaric tags for relative and absolute quantitation (iTRAQ) and high-throughput antibody arrays to produce a semi-quantitative proteomics survey of serum and tissue from subjects with (HO+) and without (HO-) heterotopic ossification. The resulting data were then analyzed using a systems biology approach. We found that serum samples from subjects experiencing traumatic injuries with resulting HO have a different proteomic expression profile compared to those from the matched controls. Subsequent quantitative ELISA identified five blood serum proteins that were differentially regulated between the HO+ and HO- groups. Compared to HO- samples, the amount of insulin-like growth factor I (IGF1) was up-regulated in HO+ samples, whereas a lower amount of osteopontin (OPN), myeloperoxidase (MPO), runt-related transcription factor 2 (RUNX2), and growth differentiation factor 2 or bone morphogenetic protein 9 (BMP-9) was found in HO+ samples (Welch two sample t-test; P < 0.05). These proteins, in combination with potential serum biomarkers previously reported, are key candidates for a serum diagnostic panel that may enable early detection of HO prior to radiographic and clinical manifestations.
Collapse
Affiliation(s)
- Erin L Crowgey
- Nemours Biomedical Research, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Jennifer T Wyffels
- Natural and Health Sciences Research Center, Center for Wound Healing Research, Daemen College, Amherst, NY 14226, USA; Department of Computer and Information Sciences, Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19711, USA
| | | | - Thomas T Wood
- San Antonio Military Medical Center, San Antonio, TX 78219, USA
| | - Laura E Edsberg
- Natural and Health Sciences Research Center, Center for Wound Healing Research, Daemen College, Amherst, NY 14226, USA.
| |
Collapse
|
5
|
Bajwa NM, Kesavan C, Mohan S. Long-term Consequences of Traumatic Brain Injury in Bone Metabolism. Front Neurol 2018; 9:115. [PMID: 29556212 PMCID: PMC5845384 DOI: 10.3389/fneur.2018.00115] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/15/2018] [Indexed: 12/14/2022] Open
Abstract
Traumatic brain injury (TBI) leads to long-term cognitive, behavioral, affective deficits, and increase neurodegenerative diseases. It is only in recent years that there is growing awareness that TBI even in its milder form poses long-term health consequences to not only the brain but to other organ systems. Also, the concept that hormonal signals and neural circuits that originate in the hypothalamus play key roles in regulating skeletal system is gaining recognition based on recent mouse genetic studies. Accordingly, many TBI patients have also presented with hormonal dysfunction, increased skeletal fragility, and increased risk of skeletal diseases. Research from animal models suggests that TBI may exacerbate the activation and inactivation of molecular pathways leading to changes in both osteogenesis and bone destruction. TBI has also been found to induce the formation of heterotopic ossification and increased callus formation at sites of muscle or fracture injury through increased vascularization and activation of systemic factors. Recent studies also suggest that the disruption of endocrine factors and neuropeptides caused by TBI may induce adverse skeletal effects. This review will discuss the long-term consequences of TBI on the skeletal system and TBI-induced signaling pathways that contribute to the formation of ectopic bone, altered fracture healing, and reduced bone mass.
Collapse
Affiliation(s)
- Nikita M Bajwa
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States
| | - Chandrasekhar Kesavan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States.,Department of Medicine, Loma Linda University, Loma Linda, CA, United States
| | - Subburaman Mohan
- Musculoskeletal Disease Center, VA Loma Linda Healthcare System, Loma Linda, CA, United States.,Department of Medicine, Loma Linda University, Loma Linda, CA, United States.,Department of Orthopedic Surgery, Loma Linda University, Loma Linda, CA, United States
| |
Collapse
|
6
|
Yang J, Qiang W, Ren S, Yi S, Li J, Guan L, Du L, Guo Y, Hu H, Li H, Li X. High-efficiency production of bioactive oleosin-basic fibroblast growth factor in A. thaliana and evaluation of wound healing. Gene 2018; 639:69-76. [DOI: 10.1016/j.gene.2017.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 09/11/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
7
|
Zou YC, Yang XW, Yuan SG, Zhang P, Ye YL, Li YK. Downregulation of dickkopf-1 enhances the proliferation and osteogenic potential of fibroblasts isolated from ankylosing spondylitis patients via the Wnt/β-catenin signaling pathway in vitro. Connect Tissue Res 2016; 57:200-11. [PMID: 26837533 DOI: 10.3109/03008207.2015.1127916] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Heterotopic ossification of the entheses is one of the most distinctive features in ankylosing spondylitis (AS). Fibroblasts are potential target cells for heterotopic ossification. The Wnt/β-catenin pathway and its inhibitor dickkopf-1 (DKK-1) regulate bone formation. DKK-1 expression in human AS tissues has not been documented. OBJECTIVE The purpose of the current study was to investigate the expression of DKK-1 in AS tissues and to elucidate its role in fibroblasts proliferation and osteogenesis in AS. METHODS DKK-1 expression was assessed by western blotting, real time-polymerase chain reaction (RT-PCR), and immunohistochemistry analysis of hip synovial tissues obtained from AS and control patients. Fibroblasts were isolated, cultured, and transfected with lentiviral vectors for overexpressing human DKK-1 or an shRNA for silencing DKK-1. MTS [(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl) 2-(4-sulfophenyl)-2H-tetrazolium] and a 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay were used to detect AS fibroblasts proliferation after transfection. The expression levels of β-catenin, phosphorylated β-catenin, c-Myc, cyclin D1, and the osteogenesis markers alkaline phosphatase (ALP), osteocalcin (OCN), and Runt-related transcription factor 2 (Runx2) were then examined by western blot analysis. Alizarin red staining (ARS) was also used to observe biomineralization activity. RESULTS DKK-1 was downregulated in hip synovial tissues from AS patients compared to that observed in controls. AS fibroblasts exhibited excessive proliferation, a higher growth rate, and a decreased apoptotic rate. EdU assay demonstrated that DKK-1 suppressed the growth of AS fibroblasts. Downregulation of DKK-1 decreased the phosphorylation of β-catenin and upregulated the expression of β-catenin, c-Myc, cyclin D1, and osteogenesis markers. Overexpression of DKK-1 had the opposite effect, resulting in the inhibition of the Wnt/β-catenin pathway. ARS showed an increase in biomineralization activity after the inhibition of DKK-1. CONCLUSIONS AS fibroblasts are characterized by an imbalance between proliferation and apoptosis. DKK-1 may play a role in switching to new bone formation in AS progression.
Collapse
Affiliation(s)
- Yu-Cong Zou
- a School of Traditional Chinese Medicine , Southern Medical University , Guangzhou , China
| | - Xian-Wen Yang
- b The Third Affiliated Hospital , Guangzhou University of Traditional Chinese Medicine , Guangzhou , China
| | - Shi-Guo Yuan
- a School of Traditional Chinese Medicine , Southern Medical University , Guangzhou , China
| | - Pei Zhang
- a School of Traditional Chinese Medicine , Southern Medical University , Guangzhou , China
| | - Yong-Liang Ye
- c Department of Emergency , Guang Zhou Orthopedics Hospital , Guangzhou , China
| | - Yi-Kai Li
- a School of Traditional Chinese Medicine , Southern Medical University , Guangzhou , China
| |
Collapse
|
8
|
Zou YC, Yang XW, Yuan SG, Zhang P, Li YK. Celastrol inhibits prostaglandin E2-induced proliferation and osteogenic differentiation of fibroblasts isolated from ankylosing spondylitis hip tissues in vitro. Drug Des Devel Ther 2016; 10:933-48. [PMID: 27022241 PMCID: PMC4790082 DOI: 10.2147/dddt.s97463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Heterotopic ossification on the enthesis, which develops after subsequent inflammation, is one of the most distinctive features in ankylosing spondylitis (AS). Prostaglandin E2 (PGE-2) serves as a key mediator of inflammation and bone remodeling in AS. Celastrol, a well-known Chinese medicinal herb isolated from Tripterygium wilfordii, is widely used in treating inflammatory diseases, including AS. It has been proven that it can inhibit lipopolysac-charide-induced expression of various inflammation mediators, such as PGE-2. However, the mechanism by which celastrol inhibits inflammation-induced bone forming in AS is unclear. OBJECTIVE To investigate whether celastrol could inhibit isolated AS fibroblast osteogenesis induced by PGE-2. METHODS Hip synovial tissues were obtained from six AS patients undergoing total hip replacement in our hospital. Fibroblasts were isolated, primarily cultured, and then treated with PGE-2 for osteogenic induction. Different doses of celastrol and indometacin were added to observe their effects on osteogenic differentiation. Cell proliferation, osteogenic markers, alizarin red staining as well as the activity of alkaline phosphatase were examined in our study. RESULTS Celastrol significantly inhibits cell proliferation of isolated AS fibroblasts and in vitro osteogenic differentiation compared with control groups in a time- and dose-dependent manner. CONCLUSION Our results demonstrated that celastrol could inhibit isolated AS fibroblast proliferation and in vitro osteogenic differentiation. The interaction of PI3K/AKT signaling and Wnt protein may be involved in the process. Further studies should be performed in vivo and animal models to identify the potential effect of celastrol on the bone metabolism of AS patients.
Collapse
Affiliation(s)
- Yu-Cong Zou
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| | - Xian-Wen Yang
- The Third Affiliated Hospital, Guangzhou University of Traditional Chinese Medicine, Guang Zhou, People’s Republic of China
| | - Shi-Guo Yuan
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| | - Pei Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| | - Yi-Kai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guang Zhou, People’s Republic of China
| |
Collapse
|
9
|
Morgan WE, Morgan CP. Chiropractic care of a patient with neurogenic heterotopic ossification of the anterior longitudinal ligament after traumatic brain injury: a case report. J Chiropr Med 2014; 13:260-5. [PMID: 25435839 DOI: 10.1016/j.jcm.2014.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 06/09/2014] [Accepted: 06/27/2014] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE The purpose of this case report is to describe the use of chiropractic care for a patient with neurogenic heterotopic ossification of the anterior longitudinal ligament in the cervical spine and soft tissues of the right hip after a traumatic brain injury and right femur fracture. CLINICAL FEATURES A 25-year-old military officer was referred to a hospital-based chiropractic clinic with complaints of pain and stiffness of the neck and back along with reduced respiratory excursions that began several months after a motor vehicle accident in which he had a traumatic brain injury. The patient had a fractured right femur from the accident, which had since been treated surgically, but had complications of heterotopic ossification in the soft tissues of the hip. His overall pain level was 3 of 10 on a verbal pain scale during use of oxycodone HCL/acetaminophen. Chest excursion was initially measured at .5 cm. INTERVENTION AND OUTCOME With the intent to restore respiratory chest motion and to reduce the patient's back and neck pain, the patient was placed on a program of chiropractic and myofascial manipulation, exercise therapy, and respiratory therapy. After a year of care, the patient rated overall pain at 3 of 10 verbal pain scale level but was no longer taking medications for pain and an increase in respiratory chest excursions measured at 3.5 cm. CONCLUSION This case demonstrated that chiropractic treatment provided benefit to a patient with heterotopic ossification concurrent with musculoskeletal pain.
Collapse
Affiliation(s)
- William E Morgan
- Chiropractor, Physical Medicine and Rehabilitation Department, Walter Reed National Military Medical Center, Bethesda, MD
| | - Clare P Morgan
- Chiropractor, Physical Medicine and Rehabilitation Department, Walter Reed National Military Medical Center, Bethesda, MD
| |
Collapse
|
10
|
Axelrad TW, Steen B, Lowenberg DW, Creevy WR, Einhorn TA. Heterotopic ossification after the use of commercially available recombinant human bone morphogenetic proteins in four patients. ACTA ACUST UNITED AC 2008; 90:1617-22. [PMID: 19043134 DOI: 10.1302/0301-620x.90b12.20975] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Heterotopic ossification occurring after the use of commercially available bone morphogenetic proteins has not been widely reported. We describe four cases of heterotopic ossification in patients treated with either recombinant bone morphogenetic protein 2 or recombinant bone morphogenetic protein 7. We found that while some patients were asymptomatic, heterotopic ossification which had occurred around a joint often required operative excision with good results.
Collapse
Affiliation(s)
- T W Axelrad
- Boston University Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
11
|
Toffoli AM, Gautschi OP, Frey SP, Filgueira L, Zellweger R. From brain to bone: evidence for the release of osteogenic humoral factors after traumatic brain injury. Brain Inj 2008; 22:511-8. [PMID: 18568704 DOI: 10.1080/02699050802158235] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PRIMARY OBJECTIVE The aetiology of the increased osteogenesis associated with severe traumatic brain injury (TBI) remains incompletely understood. The purpose of this article is to review the available evidence regarding the release of osteogenic humoral factors after TBI. RESEARCH DESIGN This study is presented in the form of a literature review. METHODS AND PROCEDURES To obtain suitable references, Pubmed was searched using keywords 'heterotopic ossification', 'brain', 'trauma', 'injury', 'aetiology'. MAIN OUTCOMES AND RESULTS Evidence from both clinical and laboratory investigations points to centrally released osteogenic factor(s) that enter the systemic circulation following TBI. CONCLUSIONS Further investigation into the identification of these putative osteogenic factor(s), using human tissues and new techniques, is indicated to better understand this phenomenon.
Collapse
Affiliation(s)
- Andrew M Toffoli
- Department of Orthopaedic and Trauma Surgery, Royal Perth Hospital, Perth, Western Australia.
| | | | | | | | | |
Collapse
|