1
|
C-kit-derived CD11b + cells are critical for cardiac allograft prolongation by autologous C-kit + progenitor cells. Cell Immunol 2019; 347:104023. [PMID: 31836133 DOI: 10.1016/j.cellimm.2019.104023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/06/2019] [Accepted: 11/25/2019] [Indexed: 10/25/2022]
Abstract
Autologous C-kit+ cells robustly prolong cardiac allografts. As C-kit+ cells can transdifferentiate to hematopoietic cells as well as non-hematopoietic cells, we aimed to clarify the class(es) of C-kit-derived cell(s) required for cardiac allograft prolongation. Autologous C-kit+ cells were administered post-cardiac transplantation and allografts were evaluated for C-kit+ inoculum-derived cells. Results suggested that alloimmunity was a major signal for trafficking of C-kit-derived cells to the allograft and demonstrated that C-kit+ inoculum-derived cells expressed CD11b early after transfer. Allograft survival studies with CD11b-DTR C-kit+ cells demonstrated a requirement for C-kit+-derived CD11b+ cells. Co-therapy studies demonstrated near complete abrogation of acute rejection with concomitant CTLA4-Ig therapy and no loss of prolongation in combination with Cyclosporine A. These results strongly implicate a C-kit-derived myeloid population as critical for allograft preservation and demonstrate the potential therapeutic application of autologous C-kit+ progenitor cells as calcineurin inhibitor-sparing agents and possibly as co-therapeutics for durable graft survival.
Collapse
|
2
|
Hertweck J, Ritz U, Götz H, Schottel PC, Rommens PM, Hofmann A. CD34 + cells seeded in collagen scaffolds promote bone formation in a mouse calvarial defect model. J Biomed Mater Res B Appl Biomater 2017; 106:1505-1516. [PMID: 28730696 DOI: 10.1002/jbm.b.33956] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/29/2017] [Accepted: 07/04/2017] [Indexed: 11/10/2022]
Abstract
Bone tissue engineering (BTE) holds promise for managing the clinical problem of large bone defects. However, clinical adoption of BTE is limited due to limited vascularization of constructs, which could be circumvented by pre-cultivation of osteogenic and endothelial derived cells in natural-based polymer scaffolds. However, until now not many studies compared the effect of mono- and cocultures pre-seeded in collagen before implantation. We utilized a mouse calvarial defect model and compared five groups of collagen scaffolds: a negative control of a collagen scaffold alone, a positive control treated with BMP-7, monocultures of either human osteoblasts (hOBs) or CD34+ cells, and a coculture of hOB and CD34+ cells. Each pre-seeded collagen scaffold was implanted in mice. After 6 weeks mice were sacrificed and their skulls prepared for volumetric and histologic analysis. We found that a monoculture of CD34+ cells and a coculture of hOB and CD34+ cells pre-cultured in the collagen scaffold increased bone regeneration to a similar extend. In these groups, greater amounts of new bone were found compared with hOB monocultures. Interestingly, monoculture of CD34+ cells demonstrated better fracture healing than monoculture of hOBs, emphasizing the possible role of angiogenesis. Our results are promising regarding a cellular based collagen BTE construct, but more work is needed to understand the complex interaction between the osteogenic and endothelial cells. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1505-1516, 2018.
Collapse
Affiliation(s)
- Jens Hertweck
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hermann Götz
- Platform for Biomaterial Research, Biomatics, University Medical Centre, Johannes Gutenberg University, Mainz, Germany
| | - Patrick C Schottel
- Department of Orthopedics and Rehabilitation, University of Vermont Medical Center, Burlington, Vermont
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Alexander Hofmann
- Department of Orthopaedics and Traumatology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
3
|
Cigarette Smoking Is Associated with a Lower Concentration of CD105(+) Bone Marrow Progenitor Cells. BONE MARROW RESEARCH 2015; 2015:914935. [PMID: 26346476 PMCID: PMC4546741 DOI: 10.1155/2015/914935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 07/06/2015] [Accepted: 07/22/2015] [Indexed: 12/20/2022]
Abstract
Cigarette smoking is associated with musculoskeletal degenerative disorders, delayed fracture healing, and nonunion. Bone marrow progenitor cells (BMPCs), known to express CD105, are important in local trophic and immunomodulatory activity and central to musculoskeletal healing/regeneration. We hypothesized that smoking is associated with lower levels of BMPC. Iliac bone marrow samples were collected from individuals aged 18–65 years during the first steps of pelvic surgery, under IRB approval with informed consent. Patients with active infectious or neoplastic disease, a history of cytotoxic or radiation therapy, primary or secondary metabolic bone disease, or bone marrow dysfunction were excluded. Separation process purity and the number of BMPCs recovered were assessed with FACS. BMPC populations in self-reported smokers and nonsmokers were compared using the two-tailed t-test. 13 smokers and 13 nonsmokers of comparable age and gender were included. The average concentration of BMPCs was 3.52 × 105/mL ± 2.45 × 105/mL for nonsmokers versus 1.31 × 105/mL ± 1.61 × 105/mL for smokers (t = 3.2, P = 0.004). This suggests that cigarette smoking is linked to a significant decrease in the concentration of BMPCs, which may contribute to the reduced regenerative capacity of smokers, with implications for musculoskeletal maintenance and repair.
Collapse
|
4
|
Kawakami Y, Ii M, Matsumoto T, Kuroda R, Kuroda T, Kwon SM, Kawamoto A, Akimaru H, Mifune Y, Shoji T, Fukui T, Kurosaka M, Asahara T. SDF-1/CXCR4 axis in Tie2-lineage cells including endothelial progenitor cells contributes to bone fracture healing. J Bone Miner Res 2015; 30:95-105. [PMID: 25130304 DOI: 10.1002/jbmr.2318] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/30/2014] [Accepted: 07/25/2014] [Indexed: 12/13/2022]
Abstract
CXC chemokine receptor 4 (CXCR4) is a specific receptor for stromal-derived-factor 1 (SDF-1). SDF-1/CXCR4 interaction is reported to play an important role in vascular development. On the other hand, the therapeutic potential of endothelial progenitor cells (EPCs) in fracture healing has been demonstrated with mechanistic insight of vasculogenesis/angiogenesis and osteogenesis enhancement at sites of fracture. The purpose of this study was to investigate the influence of the SDF-1/CXCR4 pathway in Tie2-lineage cells (including EPCs) in bone formation. We created CXCR4 gene conditional knockout mice using the Cre/loxP system and set two groups of mice: Tie2-Cre(ER) CXCR4 knockout mice (CXCR4(-/-) ) and wild-type mice (WT). We report here that in vitro, EPCs derived from of CXCR4(-/-) mouse bone marrow demonstrated severe reduction of migration activity and EPC colony-forming activity when compared with those derived from WT mouse bone marrow. In vivo, radiological and morphological examinations showed fracture healing delayed in the CXCR4(-/-) group and the relative callus area at weeks 2 and 3 was significantly smaller in CXCR4(-/-) group mice. Quantitative analysis of capillary density at perifracture sites also showed a significant decrease in the CXCR4(-/-) group. Especially, CXCR4(-/-) group mice demonstrated significant early reduction of blood flow recovery at fracture sites compared with the WT group in laser Doppler perfusion imaging analysis. Real-time RT-PCR analysis showed that the gene expressions of angiogenic markers (CD31, VE-cadherin, vascular endothelial growth factor [VEGF]) and osteogenic markers (osteocalcin, collagen 1A1, bone morphogenetic protein 2 [BMP2]) were lower in the CXCR4(-/-) group. In the gain-of-function study, the fracture in the SDF-1 intraperitoneally injected WT group healed significantly faster with enough callus formation compared with the SDF-1 injected CXCR4(-/-) group. We demonstrated that an EPC SDF-1/CXCR4 axis plays an important role in bone fracture healing using Tie2-Cre(ER) CXCR4 conditional knockout mice.
Collapse
Affiliation(s)
- Yohei Kawakami
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Japan; Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ritz U, Spies V, Mehling I, Gruszka D, Rommens PM, Hofmann A. Mobilization of CD34+-progenitor cells in patients with severe trauma. PLoS One 2014; 9:e97369. [PMID: 24826895 PMCID: PMC4020858 DOI: 10.1371/journal.pone.0097369] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 01/31/2023] Open
Abstract
Circulating CD34+ progenitor cells () gained importance in the field of regenerative medicine due to their potential to home in on injury sites and differentiate into cells of both endothelial and osteogenic lineages. In this study, we analyzed the mobilization kinetics and the numbers of CD34+, CD31+, CD45+, and CD133+ cells in twenty polytrauma patients (n = 13 male, n = 7 female, mean age 46.5±17.2 years, mean injury severity score (ISS) 35.8±12.5 points). In addition, the endothelial differentiation capacity of enriched CD34+cells was assessed by analyzing DiI-ac-LDL/lectin uptake, the expression of endothelial markers, and the morphological characteristics of these cells in Matrigel and spheroid cultures. We found that on days 1, 3, and 7 after a major trauma, the number of CD34+cells increased from 6- up to 12-fold (p<0.0001) over the number of CD34+cells from a control population of healthy, age-matched volunteers. The numbers of CD31+ cells were consistently higher on days 1 (1.4-fold, p<0.01) and 7 (1.3-fold, p<0.01), whereas the numbers of CD133+ cell did not change during the time course of investigation. Expression of endothelial marker molecules in CD34+cells was significantly induced in the polytrauma patients. In addition, we show that the CD34+ cell levels in severely injured patients were not correlated with clinical parameters, such as the ISS score, the acute physiology and chronic health evaluation II score (APACHE II), as well as the sequential organ failure assessment score (SOFA-2). Our results clearly indicate that pro-angiogenic cells are systemically mobilized after polytrauma and that their numbers are sufficient for the development of novel therapeutic models in regenerative medicine.
Collapse
Affiliation(s)
- Ulrike Ritz
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Volker Spies
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Isabella Mehling
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Dominik Gruszka
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Pol Maria Rommens
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
| | - Alexander Hofmann
- BiomaTiCS-Group, University Medical Centre of the Johannes Gutenberg University, Center of Orthopaedic and Trauma Surgery, Mainz, Germany
- * E-mail:
| |
Collapse
|
6
|
Kuroda R, Matsumoto T, Kawakami Y, Fukui T, Mifune Y, Kurosaka M. Clinical impact of circulating CD34-positive cells on bone regeneration and healing. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:190-9. [PMID: 24372338 DOI: 10.1089/ten.teb.2013.0511] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Failures in fracture healing after conventional autologous and allogenic bone grafting are mainly due to poor vascularization. To meet the clinical demand, recent attentions in the regeneration and repair of bone have been focused on the use of stem cells such as bone marrow mesenchymal stem cells and circulating skeletal stem cells. Circulating stem cells are currently paid a lot of attention due to their ease of clinical setting and high potential for osteogenesis and angiogenesis. In this report, we focus on the first proof-of-principle experiments demonstrating the collaborative characteristics of circulating CD34(+) cells, known as endothelial and hematopoietic progenitor cell-rich population, which are capable to differentiate into both endothelial cells and osteoblasts. Transplantation of circulating CD34(+) cells provides a favorable environment for fracture healing via angiogenesis/vasculogenesis and osteogenesis, finally leading to functional recovery from fracture. Based on a series of basic studies, we performed a phase 1/2 clinical trial of autologous CD34(+) cell transplantation in patients with tibial or femoral nonunions and reported the safety and efficacy of this novel therapy. In this review, the current concepts and strategies in circulating CD34(+) cell-based therapy and its potential applications for bone repair will be highlighted.
Collapse
Affiliation(s)
- Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine , Kobe, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Marsell R, Steen B, Bais MV, Mortlock DP, Einhorn TA, Gerstenfeld LC. Skeletal trauma generates systemic BMP2 activation that is temporally related to the mobilization of CD73+ cells. J Orthop Res 2014; 32:17-23. [PMID: 24018651 PMCID: PMC4263190 DOI: 10.1002/jor.22487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 02/04/2023]
Abstract
The relationship between BMP2 expression and the recruitment of skeletogenic stem cells was assessed following bone marrow reaming. BMP2 expression was examined using transgenic mice in which β-galactosidase had been inserted into the coding region of BMP2. Stem cell mobilization was analyzed by FACS analysis using CD73, a marker associated with bone marrow stromal stem cells. BMP2 expression was induced in endosteal lining cells, cortical osteocytes and periosteal cells in both the reamed and in contralateral bones. BMP2 mRNA expression in the reamed bone showed an early peak within the first 24 h of reaming followed by a later peak at 7 days, while contralateral bones only showed the 7 days peak of expression. FACS analysis sorting on CD73 positive cells showed a 50% increase of these cells at 3 and 14 days in the marrow of the injured bone and a single peak at 14 days of the marrow cell population of the contralateral bone. A ∼20% increase of CD73 positive cells was seen in the peripheral blood 2 days after reaming. These data showed that traumatic bone injury caused a systemic induction of BMP2 expression and that this increase is correlated with the mobilization of CD73 positive cells.
Collapse
Affiliation(s)
- Richard Marsell
- Department of Orthopaedic Surgery, Boston University Medical Center715 Albany Street, R-205, Boston, 02118, Massachusetts
| | - Brandon Steen
- Department of Orthopaedic Surgery, Boston University Medical Center715 Albany Street, R-205, Boston, 02118, Massachusetts
| | - Manish V Bais
- Department of Orthopaedic Surgery, Boston University Medical Center715 Albany Street, R-205, Boston, 02118, Massachusetts
| | - Douglas P Mortlock
- Department of Molecular Physiology and Biophysics Center for Human Genetics Research, Vanderbilt University School of MedicineNashville, Tennessee
| | - Thomas A Einhorn
- Department of Orthopaedic Surgery, Boston University Medical Center715 Albany Street, R-205, Boston, 02118, Massachusetts
| | - Louis C Gerstenfeld
- Department of Orthopaedic Surgery, Boston University Medical Center715 Albany Street, R-205, Boston, 02118, Massachusetts
| |
Collapse
|
8
|
Kawakami Y, Ii M, Alev C, Kawamoto A, Matsumoto T, Kuroda R, Shoji T, Fukui T, Masuda H, Akimaru H, Mifune Y, Kuroda T, Horii M, Yokoyama A, Kurosaka M, Asahara T. Local Transplantation of Ex Vivo Expanded Bone Marrow-Derived CD34-Positive Cells Accelerates Fracture Healing. Cell Transplant 2012; 21:2689-709. [DOI: 10.3727/096368912x654920] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transplantation of bone marrow (BM) CD34+ cells, an endothelial/hematopoietic progenitor-enriched cell population, has shown therapeutic efficiency in the treatment of ischemic diseases enhancing neovascularization. However, the number of CD34+ cells obtained from bone marrow is not sufficient for routine clinical application. To overcome this issue, we developed a more efficient and clinically applicable CD34+ cell expansion method. Seven-day ex vivo expansion culture of BM CD34+ cells with a cocktail of five growth factors containing VEGF, SCF, IL-6, Flt-3 ligand, and TPO resulted in reproducible more than 20-fold increase in cell number. The favorable effect of the local transplantation of culture expanded (cEx)-BM CD34+ cells on rat unhealing fractures was equivalent or higher than that of nonexpanded (fresh) BM CD34+ cells exhibiting sufficient therapeutic outcome with frequent vasculogenic/osteogenic differentiation of transplanted cEx-BM CD34+ cells and fresh BM CD34+ cells as well as intrinsic enhancement of angiogenesis/osteogenesis at the treated fracture sites. Specifically, cEx-BM CD34+ cell treatment demonstrated the best blood flow recovery at fracture sites compared with the nonexpanded BM CD34+ cells. In vitro, cEx-BM CD34+ cells showed higher colony/tube-forming capacity than nonexpanded BM CD34+ cells. Both cells demonstrated differentiation potential into osteoblasts. Since fresh BM CD34+ cells can be easily collected from fracture sites at the time of primary operation and stored for future use, autologous cEx-BM CD34+ cell transplantation would be not only a simple but also a promising therapeutic strategy for unhealing fractures in the field of orthopedic trauma surgery.
Collapse
Affiliation(s)
- Yohei Kawakami
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Masaaki Ii
- Department of Pharmacology, Osaka Medical College, Takatsuki, Osaka, Japan
| | - Cantas Alev
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan
| | - Atsuhiko Kawamoto
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Taro Shoji
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoaki Fukui
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Haruchika Masuda
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiroshi Akimaru
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Yutaka Mifune
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoya Kuroda
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Miki Horii
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Ayumi Yokoyama
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takayuki Asahara
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
9
|
Ma XL, Sun XL, Wan CY, Ma JX, Tian P. Significance of circulating endothelial progenitor cells in patients with fracture healing process. J Orthop Res 2012; 30:1860-6. [PMID: 22528744 DOI: 10.1002/jor.22134] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 03/29/2012] [Indexed: 02/04/2023]
Abstract
Fracture healing is a complex bone formation process, and neovascularization may contribute to new bone regeneration. The circulating endothelial progenitor cell (EPC) mobilization and homing could involve in neovascularization and vasculogenesis. In this study, we investigate the changes of circulating EPC during bone fracture healing, and the possible contribution of EPCs to increased neovascularization and fracture healing. The number of circulating EPCs was monitored in twenty-four patients with long bone traumatic fracture within the first 48 h and at 3, 5, 10, and 14 days post-fracture. The mononuclear cells which isolated from peripheral blood were analyzed by flow cytometry. Peripheral blood counts of leukocytes and platelets were measured by hematology analyzer. The amount of peripheral EPCs significantly increased in patients with fracture compared to age-matched healthy control subjects within the first 48 h after injury, and peaked at 3 days post-fracture. There was no significant difference in the change trend of early EPCs between male and female, but the number of early EPCs was significantly greater in younger patients compared to older patients. A comparison of the EPCs levels between patients with severe injury (ISS > 16) and patients with mild injury (ISS ≤ 16) revealed no statistically significant difference. The level of early EPCs was inverse correlation with the level of plate after fracture, but no correlation with the level of peripheral leucocytes. These findings suggest traumatic fracture may induce the mobilization of EPCs into the peripheral circulation. The increased EPCs may contribute to neovascularization and involve in fracture healing.
Collapse
|
10
|
Fadini GP, Rattazzi M, Matsumoto T, Asahara T, Khosla S. Emerging role of circulating calcifying cells in the bone-vascular axis. Circulation 2012; 125:2772-81. [PMID: 22665885 DOI: 10.1161/circulationaha.112.090860] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
11
|
McNulty MA, Virdi AS, Christopherson KW, Sena K, Frank RR, Sumner DR. Adult stem cell mobilization enhances intramembranous bone regeneration: a pilot study. Clin Orthop Relat Res 2012; 470:2503-12. [PMID: 22528386 PMCID: PMC3830081 DOI: 10.1007/s11999-012-2357-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Stem cell mobilization, which is defined as the forced egress of stem cells from the bone marrow to the peripheral blood (PB) using chemokine receptor agonists, is an emerging concept for enhancing tissue regeneration. However, the effect of stem cell mobilization by a single injection of the C-X-C chemokine receptor type 4 (CXCR4) antagonist AMD3100 on intramembranous bone regeneration is unclear. QUESTIONS/PURPOSES We therefore asked: Does AMD3100 mobilize adult stem cells in C57BL/6 mice? Are stem cells mobilized to the PB after marrow ablation? And does AMD3100 enhance bone regeneration? METHODS Female C57BL/6 mice underwent femoral marrow ablation surgery alone (n = 25), systemic injection of AMD3100 alone (n = 15), or surgery plus AMD3100 (n = 57). We used colony-forming unit assays, flow cytometry, and micro-CT to investigate mobilization of mesenchymal stem cells, endothelial progenitor cells, and hematopoietic stem cells to the PB and bone regeneration. RESULTS AMD3100 induced mobilization of stem cells to the PB, resulting in a 40-fold increase in mesenchymal stem cells. The marrow ablation injury mobilized all three cell types to the PB over time. Administration of AMD3100 led to a 60% increase in bone regeneration at Day 21. CONCLUSIONS A single injection of a CXCR4 antagonist lead to stem cell mobilization and enhanced bone volume in the mouse marrow ablation model of intramembranous bone regeneration.
Collapse
Affiliation(s)
- Margaret A. McNulty
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| | - Amarjit S. Virdi
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| | | | - Kotaro Sena
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| | - Robin R. Frank
- Division of Hematology & Oncology, Rush University Medical Center, Chicago, IL USA
| | - Dale R. Sumner
- Department of Anatomy & Cell Biology, Rush University Medical Center, 600 Paulina Street, Chicago, IL 60612 USA
| |
Collapse
|
12
|
Fukui T, Matsumoto T, Mifune Y, Shoji T, Kuroda T, Kawakami Y, Kawamoto A, Ii M, Kawamata S, Kurosaka M, Asahara T, Kuroda R. Local Transplantation of Granulocyte Colony-Stimulating Factor-Mobilized Human Peripheral Blood Mononuclear Cells for Unhealing Bone Fractures. Cell Transplant 2012. [DOI: 10.3727/096368911x582769a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We previously reported the therapeutic potential of human peripheral blood (hPB) CD34+ cells for bone fracture healing via vasculogenesis/angiogenesis and osteogenesis. Transplantation of not only hPB CD34+ cells but also hPB total mononuclear cells (MNCs) has shown their therapeutic efficiency for enhancing ischemic neovascularization. Compared with transplantation of purified hPB CD34+ cells, transplantation of hPB MNCs is more attractive due to its simple method of cell isolation and inexpensive cost performance in the clinical setting. Thus, in this report, we attempted to test a hypothesis that granulocyte colony-stimulating factor-mobilized (GM) hPB MNC transplantation could also contribute to fracture healing via vasculogenesis/angiogenesis and osteogenesis. Nude rats with unhealing fractures received local administration of the following materials with atelocollagen: 1 × 107 GM hPB MNCs (Hi group), 1 × 106 GM hPB MNCs (Lo group), or PBS (PBS group). Immunohistochemistry and real-time reverse transcriptase-polymerase chain reaction (RT-PCR) demonstrated human cell-derived vasculogenesis and osteogenesis in the Hi and Lo groups, but not in the PBS group at week 1. Intrinsic angiogenesis and osteogenesis assessed by rat capillary, osteoblast density, and real-time RT-PCR analysis was significantly enhanced in the Hi group compared to the other groups. Blood flow assessment by laser doppler perfusion imaging showed a significantly higher blood flow ratio at week 1 in the Hi group compared with the other groups. Morphological fracture healing was radiographically and histologically confirmed in about 30% of animals in the Hi group at week 8, whereas all animals in the other groups resulted in nonunion. Local transplantation of GM hPB MNCs contributes to fracture healing via vasculogenesis/angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Tomoaki Fukui
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoyuki Matsumoto
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yutaka Mifune
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Taro Shoji
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Tomoya Kuroda
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Yohei Kawakami
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Atsuhiko Kawamoto
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Masaaki Ii
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Shin Kawamata
- Stem Cell Bank Research Group, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Takayuki Asahara
- Group of Vascular Regeneration, Institute of Biomedical Research and Innovation, Kobe, Hyogo, Japan
- Department of Regenerative Medicine Science, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
13
|
Progenitor cell mobilization enhances bone healing by means of improved neovascularization and osteogenesis. Plast Reconstr Surg 2011; 128:395-405. [PMID: 21788831 DOI: 10.1097/prs.0b013e31821e6e10] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Although bone repair is a relatively efficient process, a significant portion of patients fail to heal their fractures. Because adequate blood supply is essential to osteogenesis, the authors hypothesize that augmenting neovascularization by increasing the number of circulating progenitor cells will improve bony healing. METHODS Bilateral full-thickness defects were created in the parietal bones of C57 wild-type mice. Intraperitoneal AMD3100 (n = 33) or sterile saline (n = 33) was administered daily beginning on postoperative day 3 and continuing through day 18. Circulating progenitor cell number was quantified by fluorescence-activated cell sorting. Bone regeneration was assessed with micro-computed tomography. Immunofluorescent CD31 and osteocalcin staining was performed to assess for vascularity and osteoblast density. RESULTS AMD3100 treatment increased circulating progenitor cell levels and significantly improved bone regeneration. Calvarial defects of AMD3100-treated mice demonstrated increased vascularity and osteoblast density. CONCLUSIONS Improved bone regeneration in this model was associated with elevated circulating progenitor cell number and subsequently improved neovascularization and osteogenesis. These findings highlight the importance of circulating progenitor cells in bone healing and may provide a novel therapy for bone regeneration.
Collapse
|
14
|
Grazia TJ, Plenter RJ, Lepper HM, Victorino F, Miyamoto SD, Crossno JT, Pietra BA, Gill RG, Zamora MR. Prolongation of cardiac allograft survival by a novel population of autologous CD117+ bone marrow-derived progenitor cells. Am J Transplant 2011; 11:34-44. [PMID: 21114653 PMCID: PMC3059253 DOI: 10.1111/j.1600-6143.2010.03335.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Autologous CD117(+) progenitor cells (PC) have been successfully utilized in myocardial infarction and ischemic injury, potentially through the replacement/repair of damaged vascular endothelium. To date, such cells have not been used to enhance solid organ transplant outcome. In this study, we determined whether autologous bone marrow-derived CD117(+) PC could benefit cardiac allograft survival, possibly by replacing donor vascular cells. Autologous, positively selected CD117(+) PC were administered posttransplantation and allografts were assessed for acute rejection. Although significant generation of recipient vascular cell chimerism was not observed, transferred PC disseminated both to the allograft and to peripheral lymphoid tissues and facilitated a significant, dose-dependent prolongation of allograft survival. While CD117(+) PC dramatically inhibited alloreactive T cell proliferation in vitro, this property did not differ from nonprotective CD117(-) bone marrow populations. In vivo, CD117(+) PC did not significantly inhibit T cell alloreactivity or increase peripheral regulatory T cell numbers. Thus, rather than inhibiting adaptive immunity to the allograft, CD117(+) PC may play a cytoprotective role in prolonging graft survival. Importantly, autologous CD117(+) PC appear to be distinct from bone marrow-derived mesenchymal stem cells (MSC) previously used to prolong allograft survival. As such, autologous CD117(+) PC represent a novel cellular therapy for promoting allograft survival.
Collapse
Affiliation(s)
- Todd J. Grazia
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Research 2, Box C272, 9th Floor, Rm 9118, 12700 East 19th Avenue, Aurora, CO 80045, Department of Medicine and Immunology, Barbara Davis Center for Childhood Diabetes, Transplantation Immunology, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Bldg. M20 Room 3202B, Box B-140, Aurora, CO 80045, Integrated Department of Immunology, National Jewish Medical and Research Center and University of Colorado Denver, 1400 Jackson St., K830, Denver, CO 80206
| | - Robert J. Plenter
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Research 2, Box C272, 9th Floor, Rm 9118, 12700 East 19th Avenue, Aurora, CO 80045, Department of Medicine and Immunology, Barbara Davis Center for Childhood Diabetes, Transplantation Immunology, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Bldg. M20 Room 3202B, Box B-140, Aurora, CO 80045
| | - Helen M. Lepper
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Research 2, Box C272, 9th Floor, Rm 9118, 12700 East 19th Avenue, Aurora, CO 80045, Department of Medicine and Immunology, Barbara Davis Center for Childhood Diabetes, Transplantation Immunology, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Bldg. M20 Room 3202B, Box B-140, Aurora, CO 80045
| | - Francisco Victorino
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Research 2, Box C272, 9th Floor, Rm 9118, 12700 East 19th Avenue, Aurora, CO 80045, Department of Medicine and Immunology, Barbara Davis Center for Childhood Diabetes, Transplantation Immunology, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Bldg. M20 Room 3202B, Box B-140, Aurora, CO 80045
| | - Shelley D. Miyamoto
- Department of Pediatrics, Division of Cardiology, The Children’s Hospital, University of Colorado Denver, Anschutz Medical Campus, Heart Institute, 13123 East 16th Avenue, Aurora, CO 80045
| | - Joseph T. Crossno
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Research 2, Box C272, 9th Floor, Rm 9118, 12700 East 19th Avenue, Aurora, CO 80045
| | - Biagio A. Pietra
- Department of Medicine and Immunology, Barbara Davis Center for Childhood Diabetes, Transplantation Immunology, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Bldg. M20 Room 3202B, Box B-140, Aurora, CO 80045, Department of Pediatrics, Division of Cardiology, The Children’s Hospital, University of Colorado Denver, Anschutz Medical Campus, Heart Institute, 13123 East 16th Avenue, Aurora, CO 80045
| | - Ronald G. Gill
- Department of Medicine and Immunology, Barbara Davis Center for Childhood Diabetes, Transplantation Immunology, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Bldg. M20 Room 3202B, Box B-140, Aurora, CO 80045, Integrated Department of Immunology, National Jewish Medical and Research Center and University of Colorado Denver, 1400 Jackson St., K830, Denver, CO 80206, Department of Surgery, Colorado Center for Transplantation Care, Research, and Education (CCTCARE) Institute, University of Colorado Denver, Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO 80045
| | - Martin R. Zamora
- Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver, Anschutz Medical Campus, Research 2, Box C272, 9th Floor, Rm 9118, 12700 East 19th Avenue, Aurora, CO 80045, Department of Medicine and Immunology, Barbara Davis Center for Childhood Diabetes, Transplantation Immunology, University of Colorado Denver, Anschutz Medical Campus, 1775 Aurora Court, Bldg. M20 Room 3202B, Box B-140, Aurora, CO 80045
| |
Collapse
|
15
|
Feng Y, Yang SH, Xiao BJ, Xu WH, Ye SN, Xia T, Zheng D, Liu XZ, Liao YF. Decreased in the number and function of circulation endothelial progenitor cells in patients with avascular necrosis of the femoral head. Bone 2010; 46:32-40. [PMID: 19747991 DOI: 10.1016/j.bone.2009.09.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/30/2009] [Accepted: 09/01/2009] [Indexed: 01/21/2023]
Abstract
INTRODUCTION Once non-traumatic avascular necrosis of the femoral head (ANFH) happened, vascular impairment and feeble collateral circulation are followed by poor outcomes. Circulating endothelial progenitor cells (EPCs) may substantially contribute to vascular homeostasis such as vascular repair and new blood vessel growth. We investigated whether abnormalities in EPCs levels and functions are present in ANFH patients. METHODS 54 ANFH patients were enrolled, including steroid-induced (n=21), alcohol-induced (n=15) and idiopathic ANFH (n=18), and 30 healthy subjects as control (HC). The numbers of circulation EPCs were determined by fluorescence-activated cell-sorting (FACS) analysis. EPCs cultured from peripheral blood mononuclear cells on fibronectin to induce the expression of receptors for acetylated low-density lipoprotein and ulex-lectin. EPCs colony-forming units (CFUs) were observed from 54 patients and 30 healthy controls. Migratory capacity to chemo-attractants (vascular endothelial growth factor) cellular senescence levels and in vitro angiogenesis ability were assessed in age-matched subjects (n=10 per groups). RESULTS Mean numbers of circulating EPC were 1460+/-265 cells/ml in HC, 545+/-177 in ANFH, (P<0.001). Mean numbers of CFUs were 26.2+/-6.2 in HC, 19.6+/-7.7 in ANFH,(P<0.001). Although there were not significant differences in circulating EPC and CFUs among the steroid-induced, alcohol-induced or idiopathic three groups, all these risk factors contributed to the decreased circulating EPCs numbers and CFUs. In addition, EPCs from ANFH patients showed reduced migratory capacity and increased cellular senescence compared with EPCs from normal subjects, furthermore the ability of angiogenesis in vitro was also impaired. CONCLUSION Circulating endothelial progenitor cells (EPCs) numbers and functions are reduced in ANFH patients, suggesting that risk factors of ANFH may alter EPCs biology in angiogenesis and vascular repair.
Collapse
Affiliation(s)
- Yong Feng
- Department of Orthopedics, Union Hospital, Huazhong University of Science and Technology, Wuhan, 430022, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Moioli EK, Clark PA, Chen M, Dennis JE, Erickson HP, Gerson SL, Mao JJ. Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One 2008; 3:e3922. [PMID: 19081793 PMCID: PMC2597748 DOI: 10.1371/journal.pone.0003922] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/17/2008] [Indexed: 11/19/2022] Open
Abstract
Poor angiogenesis is a major road block for tissue repair. The regeneration of virtually all tissues is limited by angiogenesis, given the diffusion of nutrients, oxygen, and waste products is limited to a few hundred micrometers. We postulated that co-transplantation of hematopoietic and mesenchymal stem/progenitor cells improves angiogenesis of tissue repair and hence the outcome of regeneration. In this study, we tested this hypothesis by using bone as a model whose regeneration is impaired unless it is vascularized. Hematopoietic stem/progenitor cells (HSCs) and mesenchymal stem/progenitor cells (MSCs) were isolated from each of three healthy human bone marrow samples and reconstituted in a porous scaffold. MSCs were seeded in micropores of 3D calcium phosphate (CP) scaffolds, followed by infusion of gel-suspended CD34(+) hematopoietic cells. Co-transplantation of CD34(+) HSCs and CD34(-) MSCs in microporous CP scaffolds subcutaneously in the dorsum of immunocompromised mice yielded vascularized tissue. The average vascular number of co-transplanted CD34(+) and MSC scaffolds was substantially greater than MSC transplantation alone. Human osteocalcin was expressed in the micropores of CP scaffolds and was significantly increased upon co-transplantation of MSCs and CD34(+) cells. Human nuclear staining revealed the engraftment of transplanted human cells in vascular endothelium upon co-transplantation of MSCs and CD34(+) cells. Based on additional in vitro results of endothelial differentiation of CD34(+) cells by vascular endothelial growth factor (VEGF), we adsorbed VEGF with co-transplanted CD34(+) and MSCs in the microporous CP scaffolds in vivo, and discovered that vascular number and diameter further increased, likely owing to the promotion of endothelial differentiation of CD34(+) cells by VEGF. Together, co-transplantation of hematopoietic and mesenchymal stem/progenitor cells may improve the regeneration of vascular dependent tissues such as bone, adipose, muscle and dermal grafts, and may have implications in the regeneration of internal organs.
Collapse
Affiliation(s)
- Eduardo K. Moioli
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| | - Paul A. Clark
- Department of Neurological Surgery CSC, University of Wisconsin at Madison Hospital, Madison, Wisconsin, United States of America
| | - Mo Chen
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| | - James E. Dennis
- Department of Orthopaedics, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Helaman P. Erickson
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| | - Stanton L. Gerson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Jeremy J. Mao
- Columbia University Medical Center, Tissue Engineering and Regenerative Medicine Laboratory (TERML), College of Dental Medicine, New York, New York, United States of America
| |
Collapse
|
17
|
Matsumoto T, Kuroda R, Mifune Y, Kawamoto A, Shoji T, Miwa M, Asahara T, Kurosaka M. Circulating endothelial/skeletal progenitor cells for bone regeneration and healing. Bone 2008; 43:434-9. [PMID: 18547890 DOI: 10.1016/j.bone.2008.05.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 04/26/2008] [Accepted: 05/02/2008] [Indexed: 02/06/2023]
Abstract
An emerging strategy in the regeneration and repair of bone is to use stem cells, including bone marrow mesenchymal stem cells, which are the most investigated and reliable source for tissue engineering, as well as circulating skeletal stem/progenitor cells, which are receiving abundant attention in regenerative medicine due to their ease of isolation and high osteogenic potential. Because failures in fracture healing are largely due to poor vascularization among many environmental factors, we highlight the first proof-of-principle experiments that elucidated the collaborative multi-lineage differentiation of circulating CD34 positive cells - a cell-enriched population of endothelial/hematopoietic progenitor cells - into not only endothelial cells but also osteoblasts. These cells develop a favorable environment for fracture healing via vasculogenesis/angiogenesis and osteogenesis, ultimately leading to functional recovery from fracture. This review will also highlight current concepts of circulating stem/progenitor cell-based therapy and their potential application for bone repair.
Collapse
Affiliation(s)
- Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Lee DY, Cho TJ, Kim JA, Lee HR, Yoo WJ, Chung CY, Choi IH. Mobilization of endothelial progenitor cells in fracture healing and distraction osteogenesis. Bone 2008; 42:932-41. [PMID: 18326482 DOI: 10.1016/j.bone.2008.01.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 12/30/2007] [Accepted: 01/04/2008] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Fracture healing and distraction osteogenesis (DO) are unique postnatal bone formation processes, and neovascularization is critically required for successful bone regeneration. We investigated endothelial progenitor cell (EPC) mobilization during bone regeneration, and the possible contribution of EPCs to increased vascularization and new bone formation, especially in DO. METHODS Mouse tibia fracture and rat tibia DO models were used in this study. The proportion of EPCs among the peripheral and splenic mononuclear cells (MNCs) was determined by examining the endothelial lineage staining characteristics and EPC cell surface markers. Messenger RNA expression of molecules related to EPC mobilization and homing at the fracture site were analyzed by ribonuclease protection assay and reverse-transcription polymerase chain reaction. In the rat tibia DO model, we measured blood flow during DO, and determined the distribution of ex vivo-expanded and intravenously-infused EPCs. RESULTS The proportion of EPCs among the peripheral and splenic MNCs increased after fracture, peaked on post-fracture day 3, and returned to basal levels during the healing period. Messenger RNA expression of EPC mobilizing cytokines such as vascular endothelial growth factor (VEGF), stem cell factor, monocyte chemoattractant protein-1, and stromal cell-derived factor-1, were upregulated at the fracture callus. The plasma VEGF levels peaked prior to the increase in the EPC proportion. Adhesion molecules involved in EPC homing were expressed at the fracture callus. In the DO model, the temporal pattern of the increase in the EPC proportion was similar to that in the fracture healing model, but the EPC proportion increased again during the distraction and consolidation phases. The distraction gap was relatively ischemic during the distraction phase and blood flow increased profusely later in the consolidation phase. The number of EPCs homing to the bone regeneration site in the DO model correlated with the number of transplanted EPCs in a dose-dependent manner. CONCLUSIONS These findings suggest that signals from the bone regeneration site mobilize EPCs from the bone marrow into the peripheral circulation. Increased EPC mobilization and homing may contribute to neovascularization and thus to new bone formation in fracture healing and DO.
Collapse
Affiliation(s)
- Dong Yeon Lee
- Department of Orthopaedic Surgery, Seoul National University College of Medicine, South Korea.
| | | | | | | | | | | | | |
Collapse
|