1
|
Bhattacharjee TT, Nicodemo MC, Sant'Anna LB, Lo Schiavo Arisawa EA, Raniero L. Tendinopathy diagnosis and treatment monitoring using attenuated total reflectance-Fourier transform infrared spectroscopy. JOURNAL OF BIOPHOTONICS 2018; 11:e201700256. [PMID: 29160619 DOI: 10.1002/jbio.201700256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 11/19/2017] [Indexed: 06/07/2023]
Abstract
Tendinopathy, an important sports injury afflicting athletes and general public, is associated with huge economic losses. The currently used diagnostic tests are subjective, show moderate sensitivity and specificity; while treatment failures persist despite advances in therapy. This highlights the need for tendinopathy diagnostic and treatment monitoring tools. This study investigates tendon injury, natural healing and effect of treatment using ATR-FTIR complemented with histopathology. Control (C), injured (I) and treated (T) rat tendons were extracted 3, 7, 14 and 28 days post-injury/treatment, representing phases of healing; and subjected to hematoxylin & eosin staining as well as spectroscopy. While C showed no change, I- and T-related histological changes could be clearly observed in stained sections. ATR-FTIR spectra highlighted the biochemical changes within groups. Multivariate analysis could classify C, I and T with 75%; different days between groups with 84%; and different days within group with 65% efficiency. Results suggest that such analysis can not only identify C, I or T but also different phases of healing. Difference between I and T at different time points also suggest change in rate of healing. Further studies may help develop this technique for clinical diagnosis and treatment monitoring in future.
Collapse
Affiliation(s)
- Tanmoy T Bhattacharjee
- Laboratory of Nanosensors, Research and Development Institute (IPD), University of Paraíba Valley (UNIVAP), São Paulo, Brazil
| | - Mariana C Nicodemo
- Biostimulation and Tissue Repair Laboratory, Research and Development Institute (IPD), University of Paraíba Valley (UNIVAP), São Paulo, Brazil
| | - Luciana B Sant'Anna
- Histology and Regenerative Therapy Laboratory, Research and Development Institute (IPD), University of Paraíba Valley (UNIVAP), São Paulo, Brazil
| | - Emilia A Lo Schiavo Arisawa
- Biostimulation and Tissue Repair Laboratory, Research and Development Institute (IPD), University of Paraíba Valley (UNIVAP), São Paulo, Brazil
| | - Leandro Raniero
- Laboratory of Nanosensors, Research and Development Institute (IPD), University of Paraíba Valley (UNIVAP), São Paulo, Brazil
| |
Collapse
|
2
|
Snedeker JG, Foolen J. Tendon injury and repair - A perspective on the basic mechanisms of tendon disease and future clinical therapy. Acta Biomater 2017; 63:18-36. [PMID: 28867648 DOI: 10.1016/j.actbio.2017.08.032] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/16/2017] [Accepted: 08/25/2017] [Indexed: 12/16/2022]
Abstract
Tendon is an intricately organized connective tissue that efficiently transfers muscle force to the bony skeleton. Its structure, function, and physiology reflect the extreme, repetitive mechanical stresses that tendon tissues bear. These mechanical demands also lie beneath high clinical rates of tendon disorders, and present daunting challenges for clinical treatment of these ailments. This article aims to provide perspective on the most urgent frontiers of tendon research and therapeutic development. We start by broadly introducing essential elements of current understanding about tendon structure, function, physiology, damage, and repair. We then introduce and describe a novel paradigm explaining tendon disease progression from initial accumulation of damage in the tendon core to eventual vascular recruitment from the surrounding synovial tissues. We conclude with a perspective on the important role that biomaterials will play in translating research discoveries to the patient. STATEMENT OF SIGNIFICANCE Tendon and ligament problems represent the most frequent musculoskeletal complaints for which patients seek medical attention. Current therapeutic options for addressing tendon disorders are often ineffective, and the need for improved understanding of tendon physiology is urgent. This perspective article summarizes essential elements of our current knowledge on tendon structure, function, physiology, damage, and repair. It also describes a novel framework to understand tendon physiology and pathophysiology that may be useful in pushing the field forward.
Collapse
|
3
|
A quantitative label-free analysis of the extracellular proteome of human supraspinatus tendon reveals damage to the pericellular and elastic fibre niches in torn and aged tissue. PLoS One 2017; 12:e0177656. [PMID: 28542244 PMCID: PMC5436668 DOI: 10.1371/journal.pone.0177656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/01/2017] [Indexed: 11/24/2022] Open
Abstract
Tears of the human supraspinatus tendon are common and often cause painful and debilitating loss of function. Progressive failure of the tendon leading to structural abnormality and tearing is accompanied by numerous cellular and extra-cellular matrix (ECM) changes in the tendon tissue. This proteomics study aimed to compare torn and aged rotator cuff tissue to young and healthy tissue, and provide the first ECM inventory of human supraspinatus tendon generated using label-free quantitative LC-MS/MS. Employing two digestion protocols (trypsin and elastase), we analysed grain-sized tendon supraspinatus biopsies from older patients with torn tendons and from healthy, young controls. Our findings confirm measurable degradation of collagen fibrils and associated proteins in old and torn tendons, suggesting a significant loss of tissue organisation. A particularly marked reduction of cartilage oligomeric matrix protein (COMP) raises the possibility of using changes in levels of this glycoprotein as a marker of abnormal tissue, as previously suggested in horse models. Surprisingly, and despite using an elastase digestion for validation, elastin was not detected, suggesting that it is not highly abundant in human supraspinatus tendon as previously thought. Finally, we identified marked changes to the elastic fibre, fibrillin-rich niche and the pericellular matrix. Further investigation of these regions may yield other potential biomarkers and help to explain detrimental cellular processes associated with tendon ageing and tendinopathy.
Collapse
|
4
|
Green EC, Zhang Y, Li H, Minus ML. Gel-spinning of mimetic collagen and collagen/nano-carbon fibers: Understanding multi-scale influences on molecular ordering and fibril alignment. J Mech Behav Biomed Mater 2017; 65:552-564. [DOI: 10.1016/j.jmbbm.2016.08.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/15/2016] [Indexed: 11/16/2022]
|
5
|
Chaudhury S, Xia Z, Thakkar D, Hakimi O, Carr AJ. Gene expression profiles of changes underlying different-sized human rotator cuff tendon tears. J Shoulder Elbow Surg 2016; 25:1561-70. [PMID: 27131575 DOI: 10.1016/j.jse.2016.02.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 02/15/2016] [Accepted: 02/24/2016] [Indexed: 02/01/2023]
Abstract
BACKGROUND Progressive cellular and extracellular matrix (ECM) changes related to age and disease severity have been demonstrated in rotator cuff tendon tears. Larger rotator cuff tears demonstrate structural abnormalities that potentially adversely influence healing potential. This study aimed to gain greater insight into the relationship of pathologic changes to tear size by analyzing gene expression profiles from normal rotator cuff tendons, small rotator cuff tears, and large rotator cuff tears. METHODS We analyzed gene expression profiles of 28 human rotator cuff tendons using microarrays representing the entire genome; 11 large and 5 small torn rotator cuff tendon specimens were obtained intraoperatively from tear edges, which we compared with 12 age-matched normal controls. We performed real-time polymerase chain reaction and immunohistochemistry for validation. RESULTS Torn rotator cuff tendons demonstrated upregulation of a number of key genes, such as matrix metalloproteinase 3, 10, 12, 13, 15, 21, and 25; a disintegrin and metalloproteinase (ADAM) 12, 15, and 22; and aggrecan. Amyloid was downregulated in all tears. Small tears displayed upregulation of bone morphogenetic protein 5. Chemokines and cytokines that may play a role in chemotaxis were altered; interleukins 3, 10, 13, and 15 were upregulated in tears, whereas interleukins 1, 8, 11, 18, and 27 were downregulated. CONCLUSIONS The gene expression profiles of normal controls and small and large rotator cuff tear groups differ significantly. Extracellular matrix remodeling genes were found to contribute to rotator cuff tear pathogenesis. Rotator cuff tears displayed upregulation of a number of matrix metalloproteinase (3, 10, 12, 13, 15, 21, and 25), a disintegrin and metalloproteinase (ADAM 12, 15, and 22) genes, and downregulation of some interleukins (1, 8, and 27), which play important roles in chemotaxis. These gene products may potentially have a role as biomarkers of failure of healing or therapeutic targets to improve tendon healing.
Collapse
Affiliation(s)
- Salma Chaudhury
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Surgery, Nuffield Orthopaedic Center, University of Oxford, Oxford, UK.
| | | | - Dipti Thakkar
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Surgery, Nuffield Orthopaedic Center, University of Oxford, Oxford, UK
| | - Osnat Hakimi
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Surgery, Nuffield Orthopaedic Center, University of Oxford, Oxford, UK
| | - Andrew J Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Surgery, Nuffield Orthopaedic Center, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Kulig K, Chang YJ, Winiarski S, Bashford GR. Ultrasound-Based Tendon Micromorphology Predicts Mechanical Characteristics of Degenerated Tendons. ULTRASOUND IN MEDICINE & BIOLOGY 2016; 42:664-673. [PMID: 26718836 DOI: 10.1016/j.ultrasmedbio.2015.11.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/10/2015] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
The purpose of this study was to explore the relationship between tendon micro-morphology quantified from a sonogram and tendon mechanical characteristics measured in vivo. Nineteen adults (nine with unilateral Achilles tendinosis) participated. A commercial ultrasound scanner was used to capture longitudinal B-mode ultrasound images from the mid-portion of bilateral Achilles tendons and a custom image analysis program was used to analyze the spatial frequency content of manually defined regions of interest; in particular, the average peak spatial frequency of the regions of interest was acquired. In addition, a dynamometer and a motion analysis system indirectly measured the tendon mechanical (stiffness) and material (elastic modulus) properties. The peak spatial frequency correlated with tendon stiffness (r = 0.74, p = 0.02) and elastic modulus (r = 0.65, p = 0.05) in degenerated tendons, but not healthy tendons. This is the first study relating the mechanical characteristics of degenerated human Achilles tendon using a non-invasive micro-morphology analysis approach.
Collapse
Affiliation(s)
- Kornelia Kulig
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA.
| | - Yu-Jen Chang
- Division of Physical Therapy, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Slawomir Winiarski
- Department of Biomechanics, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Gregory R Bashford
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
7
|
Sejersen MHJ, Frost P, Hansen TB, Deutch SR, Svendsen SW. Proteomics perspectives in rotator cuff research: a systematic review of gene expression and protein composition in human tendinopathy. PLoS One 2015; 10:e0119974. [PMID: 25879758 PMCID: PMC4400011 DOI: 10.1371/journal.pone.0119974] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/03/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Rotator cuff tendinopathy including tears is a cause of significant morbidity. The molecular pathogenesis of the disorder is largely unknown. This review aimed to present an overview of the literature on gene expression and protein composition in human rotator cuff tendinopathy and other tendinopathies, and to evaluate perspectives of proteomics--the comprehensive study of protein composition--in tendon research. MATERIALS AND METHODS We conducted a systematic search of the literature published between 1 January 1990 and 18 December 2012 in PubMed, Embase, and Web of Science. We included studies on objectively quantified differential gene expression and/or protein composition in human rotator cuff tendinopathy and other tendinopathies as compared to control tissue. RESULTS We identified 2199 studies, of which 54 were included; 25 studies focussed on rotator cuff or biceps tendinopathy. Most of the included studies quantified prespecified mRNA molecules and proteins using polymerase chain reactions and immunoassays, respectively. There was a tendency towards an increase of collagen I (11 of 15 studies) and III (13 of 14), metalloproteinase (MMP)-1 (6 of 12), -9 (7 of 7), -13 (4 of 7), tissue inhibitor of metalloproteinase (TIMP)-1 (4 of 7), and vascular endothelial growth factor (4 of 7), and a decrease in MMP-3 (10 of 12). Fourteen proteomics studies of tendon tissues/cells failed inclusion, mostly because they were conducted in animals or in vitro. CONCLUSIONS Based on methods, which only allowed simultaneous quantification of a limited number of prespecified mRNA molecules or proteins, several proteins appeared to be differentially expressed/represented in rotator cuff tendinopathy and other tendinopathies. No proteomics studies fulfilled our inclusion criteria, although proteomics technologies may be a way to identify protein profiles (including non-prespecified proteins) that characterise specific tendon disorders or stages of tendinopathy. Thus, our results suggested an untapped potential for proteomics in tendon research.
Collapse
Affiliation(s)
- Maria Hee Jung Sejersen
- Danish Ramazzini Centre, Department of Occupational Medicine, Regional Hospital West Jutland—University Research Clinic, Herning, Denmark
| | - Poul Frost
- Danish Ramazzini Centre, Department of Occupational Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Torben Bæk Hansen
- Research Unit for Orthopaedics, Holstebro Regional Hospital, Holstebro, Denmark
- Institute of Clinical Medicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark
| | | | - Susanne Wulff Svendsen
- Danish Ramazzini Centre, Department of Occupational Medicine, Regional Hospital West Jutland—University Research Clinic, Herning, Denmark
| |
Collapse
|
8
|
Thakkar D, Grant TM, Hakimi O, Carr AJ. Distribution and expression of type VI collagen and elastic fibers in human rotator cuff tendon tears. Connect Tissue Res 2014; 55:397-402. [PMID: 25166893 DOI: 10.3109/03008207.2014.959119] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
There is increasing evidence for a progressive extracellular matrix change in rotator cuff disease progression. Directly surrounding the cell is the pericellular matrix, where assembly of matrix aggregates typically occurs making it critical in the response of tendon cells to pathological conditions. Studies in animal models have identified type VI collagen, fibrillin-1 and elastin to be located in the pericellular matrix of tendon and contribute in maintaining the structural and biomechanical integrity of tendon. However, there have been no reports on the localization of these proteins in human tendon biopsies. This study aimed to characterize the distribution of these ECM components in human rotator cuffs and gain greater insight into the relationship of pathology to tear size by analyzing the distribution and expression profiles of these ECM components. Confocal microscopy confirmed the localization of these structural molecules in the pericellular matrix of the human rotator cuff. Tendon degeneration led to an increased visibility of these components with a significant disorganization in the distribution of type VI collagen. At the genetic level, an increase in tear size was linked to an increased transcription of type VI collagen and fibrillin-1 with no significant alteration in the elastin levels. This is the first study to confirm the localization of type VI collagen, elastin and fibrillin-1 in the pericellular region of human supraspinatus tendon and assesses the effect of tendon degeneration on these structures, thus providing a useful insight into the composition of human rotator cuff tears which can be instrumental in predicting disease prognosis.
Collapse
Affiliation(s)
- Dipti Thakkar
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford , Oxford , UK and
| | | | | | | |
Collapse
|
9
|
Tilley JMR, Murphy RJ, Chaudhury S, Czernuszka JT, Carr AJ. Effect of tear size, corticosteroids and subacromial decompression surgery on the hierarchical structural properties of torn supraspinatus tendons. Bone Joint Res 2014; 3:252-61. [PMID: 25106417 PMCID: PMC4127658 DOI: 10.1302/2046-3758.38.2000251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/05/2014] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES The effects of disease progression and common tendinopathy treatments on the tissue characteristics of human rotator cuff tendons have not previously been evaluated in detail owing to a lack of suitable sampling techniques. This study evaluated the structural characteristics of torn human supraspinatus tendons across the full disease spectrum, and the short-term effects of subacromial corticosteroid injections (SCIs) and subacromial decompression (SAD) surgery on these structural characteristics. METHODS Samples were collected inter-operatively from supraspinatus tendons containing small, medium, large and massive full thickness tears (n = 33). Using a novel minimally invasive biopsy technique, paired samples were also collected from supraspinatus tendons containing partial thickness tears either before and seven weeks after subacromial SCI (n = 11), or before and seven weeks after SAD surgery (n = 14). Macroscopically normal subscapularis tendons of older patients (n = 5, mean age = 74.6 years) and supraspinatus tendons of younger patients (n = 16, mean age = 23.3) served as controls. Ultra- and micro-structural characteristics were assessed using atomic force microscopy and polarised light microscopy respectively. RESULTS Significant structural differences existed between torn and control groups. Differences were identifiable early in the disease spectrum, and increased with increasing tear size. Neither SCI nor SAD surgery altered the structural properties of partially torn tendons seven weeks after treatment. CONCLUSIONS These findings may suggest the need for early clinical intervention strategies for torn rotator cuff tendons in order to prevent further degeneration of the tissue as tear size increases. Further work is required to establish the long-term abilities of SCI and SAD to prevent, and even reverse, such degeneration. Cite this article: Bone Joint Res 2014;3:252-61.
Collapse
Affiliation(s)
- J M R Tilley
- University of Oxford, Department of Materials, Oxford OX1 3PH, UK
| | - R J Murphy
- Institute of Musculoskeletal Sciences, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - S Chaudhury
- Institute of Musculoskeletal Sciences, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| | - J T Czernuszka
- University of Oxford, Department of Materials, Oxford OX1 3PH, UK
| | - A J Carr
- Institute of Musculoskeletal Sciences, University of Oxford, Old Road, Oxford, OX3 7LD, UK
| |
Collapse
|