1
|
de Paula Mozella A, Alexandre de Araujo Barros Cobra H, Monteiro da Palma I, Salim R, Antonio Matheus Guimarães J, Costa G, Carolina Leal A. Synovial fluid NMR-based metabolomics in septic and aseptic revision total knee arthroplasty: Implications on diagnosis and treatment. J Orthop Res 2024; 42:2336-2344. [PMID: 38725379 DOI: 10.1002/jor.25870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 10/19/2024]
Abstract
Periprosthetic joint infection (PJI) is one of the most challenging complications following total knee arthroplasty. Despite its importance, there is a paucity of reports in the literature regarding its pathogenesis. Recently, cellular metabolic reprogramming has been shown to play an important role in the progression and outcome of infectious diseases. Therefore, the aim of this study was to evaluate the metabolites composition of the synovial fluid from patients with PJI or aseptic failure of total knee arthroplasties. The synovial fluids from 21 patients scheduled for revision total knee arthroplasty (11 with the diagnosis of PJI and 10 with aseptic failures) were analyzed using 1D 1H NMR spectroscopy. Univariate and multivariate statistical analyzes were used to identify metabolites that were differentially abundant between those groups. A total of 28 metabolites were identified and five of them found to be differentially abundant between infected and non-infected synovial fluids. Lactate, acetate and 3-hydroxybutyrate were found to be in a higher concentration, and glucose and creatine were found reduced in the synovial fluid from PJI patients. Synovial fluid from patients with PJI exhibit a distinct metabolic profile, possibly reflecting metabolic adaptation that occurs in the infected periprosthetic microenvironment. Further research and studies are warranted to gain a broader insight into the metabolic pathways engaged by both pathogen and immune cells in the context of a PJI.
Collapse
Affiliation(s)
- Alan de Paula Mozella
- Department of Knee Surgery, National Institute of Traumatology and Orthopaedics, Rio de Janeiro, Brazil
| | | | - Idemar Monteiro da Palma
- Department of Knee Surgery, Rios D'or Hospital, Rio de Janeiro, Brazil
- Department of Knee Surgery, Montese Medical Center, Rio de Janeiro, Brazil
| | - Rodrigo Salim
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Gilson Costa
- Department of Genetics, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Leal
- Teaching and Research Division, National Institute of Traumatology and Orthopaedics, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Wang Y, Li G, Ji B, Xu B, Zhang X, Maimaitiyiming A, Cao L. Diagnosis of periprosthetic joint infections in patients who have rheumatoid arthritis. Bone Joint Res 2023; 12:559-570. [PMID: 37704202 PMCID: PMC10499527 DOI: 10.1302/2046-3758.129.bjr-2022-0432.r1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
Aims To investigate the optimal thresholds and diagnostic efficacy of commonly used serological and synovial fluid detection indexes for diagnosing periprosthetic joint infection (PJI) in patients who have rheumatoid arthritis (RA). Methods The data from 348 patients who had RA or osteoarthritis (OA) and had previously undergone a total knee (TKA) and/or a total hip arthroplasty (THA) (including RA-PJI: 60 cases, RA-non-PJI: 80 cases; OA-PJI: 104 cases, OA-non-PJI: 104 cases) were retrospectively analyzed. A receiver operating characteristic curve was used to determine the optimal thresholds of the CRP, ESR, synovial fluid white blood cell count (WBC), and polymorphonuclear neutrophil percentage (PMN%) for diagnosing RA-PJI and OA-PJI. The diagnostic efficacy was evaluated by comparing the area under the curve (AUC) of each index and applying the results of the combined index diagnostic test. Results For PJI prediction, the results of serological and synovial fluid indexes were different between the RA-PJI and OA-PJI groups. The optimal cutoff value of CRP for diagnosing RA-PJI was 12.5 mg/l, ESR was 39 mm/hour, synovial fluid WBC was 3,654/μl, and PMN% was 65.9%; and those of OA-PJI were 8.2 mg/l, 31 mm/hour, 2,673/μl, and 62.0%, respectively. In the RA-PJI group, the specificity (94.4%), positive predictive value (97.1%), and AUC (0.916) of synovial fluid WBC were higher than those of the other indexes. The optimal cutoff values of synovial fluid WBC and PMN% for diagnosing RA-PJI after THA were significantly higher than those of TKA. The specificity and positive predictive value of the combined index were 100%. Conclusion Serum inflammatory and synovial fluid indexes can be used for diagnosing RA-PJI, for which synovial fluid WBC is the best detection index. Combining multiple detection indexes can provide a reference basis for the early and accurate diagnosis of RA-PJI.
Collapse
Affiliation(s)
- Yulai Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guoqing Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Baochao Ji
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Boyong Xu
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaogang Zhang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | | | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Li H, Fu J, Erlong N, LI R, Xu C, Hao L, Chen J, Chai W. Characterization of periprosthetic environment microbiome in patients after total joint arthroplasty and its potential correlation with inflammation. BMC Infect Dis 2023; 23:423. [PMID: 37349686 PMCID: PMC10286366 DOI: 10.1186/s12879-023-08390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
AIMS Periprosthetic joint infection (PJI) is one of the most serious complications after total joint arthroplasty (TJA) but the characterization of the periprosthetic environment microbiome after TJA remains unknown. Here, we performed a prospective study based on metagenomic next-generation sequencing to explore the periprosthetic microbiota in patients with suspected PJI. METHODS We recruited 28 patients with culture-positive PJI, 14 patients with culture-negative PJI, and 35 patients without PJI, which was followed by joint aspiration, untargeted metagenomic next-generation sequencing (mNGS), and bioinformatics analysis. Our results showed that the periprosthetic environment microbiome was significantly different between the PJI group and the non-PJI group. Then, we built a "typing system" for the periprosthetic microbiota based on the RandomForest Model. After that, the 'typing system' was verified externally. RESULTS We found the periprosthetic microbiota can be classified into four types generally: "Staphylococcus type," "Pseudomonas type," "Escherichia type," and "Cutibacterium type." Importantly, these four types of microbiotas had different clinical signatures, and the patients with the former two microbiota types showed obvious inflammatory responses compared to the latter ones. Based on the 2014 Musculoskeletal Infection Society (MSIS) criteria, clinical PJI was more likely to be confirmed when the former two types were encountered. In addition, the Staphylococcus spp. with compositional changes were correlated with C-reactive protein levels, the erythrocyte sedimentation rate, and the synovial fluid white blood cell count and granulocyte percentage. CONCLUSIONS Our study shed light on the characterization of the periprosthetic environment microbiome in patients after TJA. Based on the RandomForest model, we established a basic "typing system" for the microbiota in the periprosthetic environment. This work can provide a reference for future studies about the characterization of periprosthetic microbiota in periprosthetic joint infection patients.
Collapse
Affiliation(s)
- Hao Li
- Medical School of Chinese PLA, Beijing, People’s Republic of China
- Department of Orthopedic Surgery, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, People’s Republic of China
| | - Jun Fu
- Department of Orthopedic Surgery, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, People’s Republic of China
| | - Niu Erlong
- Department of Orthopedics, 305 Hospital of PLA, Beijing, People’s Republic of China
| | - Rui LI
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Chi Xu
- Department of Orthopedic Surgery, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, People’s Republic of China
| | - Libo Hao
- Department of Orthopedic Surgery, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, People’s Republic of China
| | - Jiying Chen
- Department of Orthopedic Surgery, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, People’s Republic of China
| | - Wei Chai
- Department of Orthopedic Surgery, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, People’s Republic of China
- Senior Department of Orthopedics, Fourth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Xu T, Zeng Y, Yang X, Liu G, Lv T, Yang H, Jiang F, Chen Y. Application of 68Ga-citrate PET/CT for differentiating periprosthetic joint infection from aseptic loosening after joint replacement surgery. Bone Joint Res 2022; 11:398-408. [PMID: 35731211 PMCID: PMC9233412 DOI: 10.1302/2046-3758.116.bjr-2021-0464.r1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AIMS We aimed to evaluate the utility of 68Ga-citrate positron emission tomography (PET)/CT in the differentiation of periprosthetic joint infection (PJI) and aseptic loosening (AL), and compare it with 99mTc-methylene bisphosphonates (99mTc-MDP) bone scan. METHODS We studied 39 patients with suspected PJI or AL. These patients underwent 68Ga-citrate PET/CT, 99mTc-MDP three-phase bone scan and single-photon emission CT (SPECT)/CT. PET/CT was performed at ten minutes and 60 minutes after injection, respectively. Images were evaluated by three nuclear medicine doctors based on: 1) visual analysis of the three methods based on tracer uptake model, and PET images attenuation-corrected with CT and those not attenuation-corrected with CT were analyzed, respectively; and 2) semi-quantitative analysis of PET/CT: maximum standardized uptake value (SUVmax) of lesions, SUVmax of the lesion/SUVmean of the normal bone, and SUVmax of the lesion/SUVmean of the normal muscle. The final diagnosis was based on the clinical and intraoperative findings, and histopathological and microbiological examinations. RESULTS Overall, 23 and 16 patients were diagnosed with PJI and AL, respectively. The sensitivity and specificity of three-phase bone scan and SPECT/CT were 100% and 62.5%, 82.6%, and 100%, respectively. Attenuation correction (AC) at 60 minutes and non-AC at 60 minutes of PET/CT had the same highest sensitivity and specificity (91.3% and 100%), and AC at 60 minutes combined with SPECT/CT could improve the diagnostic efficiency (sensitivity = 95.7%). Diagnostic efficacy of the SUVmax was low (area under the curve (AUC) of ten minutes and 60 minutes was 0.814 and 0.806, respectively), and SUVmax of the lesion/SUVmean of the normal bone at 60 minutes was the best semi-quantitative parameter (AUC = 0.969). CONCLUSION 68Ga-citrate showed the potential to differentiate PJI from AL, and visual analysis based on uptake pattern of tracer was reliable. The visual analysis method of AC at 60 minutes, combined with 99mTc-MDP SPECT/CT, could improve the sensitivity from 91.3% to 95.7%. In addition, a major limitation of our study was that it had a limited sample size, and more detailed studies with a larger sample size are warranted. Cite this article: Bone Joint Res 2022;11(6):398-408.
Collapse
Affiliation(s)
- Tingting Xu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yalan Zeng
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiao Yang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Guangfu Liu
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Taiyong Lv
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Hongbin Yang
- Department of Orthopedics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fei Jiang
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Chen
- Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China.,Institute of Nuclear Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|