1
|
Spanninga BJ, Hoelen TCA, Johnson S, Cheng B, Blokhuis TJ, Willems PC, Arts JJC. Clinical efficacy and safety of P-15 peptide enhanced bone graft substitute in surgical bone regenerative procedures in adult maxillofacial, spine, and trauma patients : a systematic literature review. Bone Joint Res 2025; 14:77-92. [PMID: 39901815 PMCID: PMC11795317 DOI: 10.1302/2046-3758.142.bjr-2024-0033.r2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2025] Open
Abstract
Aims Autologous bone graft (ABG) is considered the 'gold standard' among graft materials for bone regeneration. However, complications including limited availability, donor site morbidity, and deterioration of regenerative capacity over time have been reported. P-15 is a synthetic peptide that mimics the cell binding domain of Type-I collagen. This peptide stimulates new bone formation by enhancing osteogenic cell attachment, proliferation, and differentiation. The objective of this study was to conduct a systematic literature review to determine the clinical efficacy and safety of P-15 peptide in bone regeneration throughout the skeletal system. Methods PubMed, Embase, Web of Science, and Cochrane Library were searched for relevant articles on 13 May 2023. The systematic review was reported according to the PRISMA guidelines. Two reviewers independently screened and assessed the identified articles. Quality assessment was conducted using the methodological index for non-randomized studies and the risk of bias assessment tool for randomized controlled trials. Results After screening, 28 articles were included and grouped by surgical indication, e.g. maxillofacial procedures (n = 18), spine (n = 9), and trauma (n = 1). Published results showed that P-15 peptide was effective in spinal fusion (n = 7) and maxillofacial (n = 11), with very few clinically relevant adverse events related to P-15 peptide. Conclusion This systematic literature review concluded that moderate- (risk of bias, some concern: 50%) to high-quality (risk of bias, low: 46%) clinical evidence exists showing equivalent safety and efficacy in bone regeneration using a P-15 peptide enhanced bone graft substitute compared to ABG. P-15 peptide is safe and effective, resulting in rapid bone formation with a low probability of minor complications.
Collapse
Affiliation(s)
- Barend J. Spanninga
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht, Netherlands
| | - Thomáy-Claire A. Hoelen
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht, Netherlands
- Department of Orthopaedic Surgery, CAPHRI research school, Maastricht University Medical Center, Maastricht, Netherlands
| | | | - Boyle Cheng
- Department of Neurosurgery, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
- Department of Orthopedic Surgery, Allegheny General Hospital, Pittsburgh, Pennsylvania, USA
| | - Taco J. Blokhuis
- Department of Orthopaedic Surgery, CAPHRI research school, Maastricht University Medical Center, Maastricht, Netherlands
- Department of Surgery, Maastricht University Medical Centre, NUTRIM research school, Maastricht, Netherlands
| | - Paul C. Willems
- Department of Orthopaedic Surgery, CAPHRI research school, Maastricht University Medical Center, Maastricht, Netherlands
| | - Jacobus J. C. Arts
- Laboratory for Experimental Orthopaedics, Department of Orthopaedic Surgery, Maastricht University, Maastricht, Netherlands
- Department of Orthopaedic Surgery, CAPHRI research school, Maastricht University Medical Center, Maastricht, Netherlands
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
2
|
Bai L, Zhang X, Shen W, Wang P, Yin X, Liu J, Xu H, Liu B, Man Z, Li W. Multifunctional Scaffold Comprising Metal-Organic Framework, Hydrogel, and Demineralized Bone Matrix for the Treatment of Steroid-Induced Femoral Head Necrosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407758. [PMID: 39575484 DOI: 10.1002/smll.202407758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/05/2024] [Indexed: 01/23/2025]
Abstract
Overproduction of reactive oxygen species (ROS) results in oxidative stress, a critical factor in the pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH). Excess ROS not only hinders the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) but also impairs mitochondrial structure and function, resulting in irreversible cellular damage. Herein, a biomimetic multifunctional scaffold comprising Zn-modified metal-organic framework 818 (Zn-MOF-818) loaded with deferoxamine (DFO), gelatin methacryloyl (GelMA) hydrogel, and demineralized bone matrix (DBM) is shown to scavenge excess ROS, promote angiogenesis, and regulate immunity. Introduced Zn significantly enhances the superoxide dismutase- and catalase-like activities of MOF-818, which increases ROS-scavenging efficiency. Zn-MOF-818 disrupts the vicious intracellular cycle of mitochondrial dysfunction and ROS accumulation by enhancing mitophagy, stabilizing mitochondrial function, and upregulating antioxidant genes. Additionally, Zn-MOF-818 facilitates the polarization of macrophages toward the M2 phenotype and alleviates inflammation, creating an advantageous immune microenvironment for osteogenic differentiation of BMSCs. The release of DFO, an activator of the HIF-1α pathway, and Zn2+ from Zn-MOF-818, along with the secretion of various cytokines from DBM (such as bone morphogenetic proteins and vascular endothelial growth factors), enhances angiogenesis and osteogenesis. This scaffold targets multiple factors concurrently, offering a promising new approach for treating SONFH.
Collapse
Affiliation(s)
- Liangjie Bai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xiaolei Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Wei Shen
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong, 276007, China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Xin Yin
- Department of Joint Surgery, Linyi People's Hospital, Shandong University, Linyi, Shandong, 276007, China
| | - Jianing Liu
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Hailun Xu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Bing Liu
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Jinan, 250021, China
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, China
| |
Collapse
|
3
|
Aoki K, Ideta H, Komatsu Y, Tanaka A, Kito M, Okamoto M, Takahashi J, Suzuki S, Saito N. Bone-Regeneration Therapy Using Biodegradable Scaffolds: Calcium Phosphate Bioceramics and Biodegradable Polymers. Bioengineering (Basel) 2024; 11:180. [PMID: 38391666 PMCID: PMC10886059 DOI: 10.3390/bioengineering11020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Calcium phosphate-based synthetic bone is broadly used for the clinical treatment of bone defects caused by trauma and bone tumors. Synthetic bone is easy to use; however, its effects depend on the size and location of the bone defect. Many alternative treatment options are available, such as joint arthroplasty, autologous bone grafting, and allogeneic bone grafting. Although various biodegradable polymers are also being developed as synthetic bone material in scaffolds for regenerative medicine, the clinical application of commercial synthetic bone products with comparable performance to that of calcium phosphate bioceramics have yet to be realized. This review discusses the status quo of bone-regeneration therapy using artificial bone composed of calcium phosphate bioceramics such as β-tricalcium phosphate (βTCP), carbonate apatite, and hydroxyapatite (HA), in addition to the recent use of calcium phosphate bioceramics, biodegradable polymers, and their composites. New research has introduced potential materials such as octacalcium phosphate (OCP), biologically derived polymers, and synthetic biodegradable polymers. The performance of artificial bone is intricately related to conditions such as the intrinsic material, degradability, composite materials, manufacturing method, structure, and signaling molecules such as growth factors and cells. The development of new scaffold materials may offer more efficient bone regeneration.
Collapse
Affiliation(s)
- Kaoru Aoki
- Physical Therapy Division, School of Health Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Hirokazu Ideta
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Yukiko Komatsu
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Atsushi Tanaka
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Munehisa Kito
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Masanori Okamoto
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Jun Takahashi
- Department of Orthopaedic Surgery, Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shuichiro Suzuki
- Department of Orthopaedic Surgery, Matsumoto Medical Center, Matsumoto 390-8621, Japan
| | - Naoto Saito
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
4
|
Ma T, Ren D, Wang J, Fu F, Sun WQ, Sun H. Enhanced osteogenicity of the demineralized bone-dermal matrix composite by the optimal partial demineralization for sustained release of bioactive molecules. J Biomed Mater Res B Appl Biomater 2024; 112:e35358. [PMID: 38247243 DOI: 10.1002/jbm.b.35358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/16/2023] [Accepted: 11/24/2023] [Indexed: 01/23/2024]
Abstract
Allogenic demineralized bone matrix (DBM), processed to expose bioactive proteins imbedded by calcium salts, is widely used for bone repair and regeneration as an alternative to the autologous bone graft. However, demineralized bone matrices from tissue banks vary significantly in residual calcium content and osteogenicity for clinical bone regeneration. The present study produced DBM with various residual calcium contents by partial demineralization using ethylenediaminetetraacetic acid disodium (EDTA) and hydrochloric acid. Compositional analysis reveals that, as the percent weight loss of bone materials increases from 0% to 74.9% during demineralization, the residual calcium content of DBM decreases from 24.8% to 0.2% and collagen content increases from 29.7% to 92.6%. Calorimetrical analysis and Fourier transform infrared (FTIR) analysis demonstrated that demineralization to the residual calcium content of <4% enables the complete exposure and/or release of bone collagen fibers and other bioactive molecules. In order to evaluate the relationship between the extent of demineralization and the osteogenicity of DBM, DBM particles were fabricated with the aid of acellular dermal matrix (ADM) microfibers to form flexible foam-like DBM/ADM composites. Proteomic analysis identified various type collagens and bone formation-related bioactive molecules in both ADM and DBM. Using the rat bilateral Φ = 5 mm calvarium defect repair model, the study had shown that the DBM/ADM composite with ~20% DBM residual calcium (e.g., ~40% calcium being removed) maximized the osteogenicity for bone defect repair after 4 and 8 weeks. DBM with ~40% calcium removal had the maximal osteogenicity presumably through the sustained release of bioactive molecules during the process of bone regeneration.
Collapse
Affiliation(s)
- Tong Ma
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Dangli Ren
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Jingjing Wang
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Feng Fu
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Wendell Q Sun
- Institute of Biothermal Science and Technology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hongtao Sun
- Tianjin Key Laboratory of Neurotrauma Repair, Institute of Neurotrauma Repair, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- First Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Gordon A, Newsome F, Ahern DP, McDonnell JM, Cunniffe G, Butler JS. Iliac crest bone graft versus cell-based grafts to augment spinal fusion: a systematic review and meta-analysis. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024; 33:253-263. [PMID: 37740784 DOI: 10.1007/s00586-023-07941-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Despite successful fusion rates with iliac crest bone graft (ICBG), donor-site morbidity and increased operating time remain a considerable limitation and drive the search for alternatives. In this systematic review, grafts with additional cellular supplementation were compared with ICBG for spinal arthrodesis. We compared safety, efficacy and long-term outcomes, thus providing the current and relevant evidence for orthopaedic surgeons to make informed choices regarding this rapidly developing field. METHODS An electronic literature search was conducted according to the PRISMA guidelines by two independent reviewers for articles published up to 1st March 2023 using PubMed, EMBASE and the Cochrane Central Register of Controlled Trial. Cellular allografts were not included. The following data were extracted: Number of patients, type of graft, fusion assessment method, follow-up duration, fusion rates, clinical outcomes and complications. The methodological quality of evidence (MQOE) was assessed using the Risk of Bias 2 (RoB-2) tool and Risk of Bias In Non-Randomised Studies (ROBINS) tool developed by Cochrane for evaluating bias in randomised and non-randomised studies. RESULTS Ten studies fulfiled the inclusion criteria, including 465 patients. The mean number of patients per study was 43.8 (std dev. 28.81, range 12-100). Two studies demonstrated cell-based therapy to be significantly more successful in terms of fusion rates compared to ICBG. However, the remaining eight demonstrated equivocal results. No study found that cell-based therapy was inferior. No difference was seen between the two groups in three studies who focused on degenerative cohorts. No difference in functional outcome scores was seen between the groups. A number of different preparation techniques for cell-based grafts were used throughout the studies. CONCLUSION Cell-based therapy offers a promising alternative to ICBG in spinal fusion surgery, which could help reduce the associated morbidity to patients. This review found that cell-based therapy is non-inferior to iliac crest bone graft and may offer patients an alternative treatment option with fewer complications and reduced post-operative pain. However, the literature to date is limited by heterogeneity of the cell preparation and grafting process. Future research with a unified approach to the cell preparation process is required to fully delineate the potential advantages of this technology.
Collapse
Affiliation(s)
- Aoife Gordon
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Fiona Newsome
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Daniel P Ahern
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland.
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland.
- Department of Trauma and Orthopaedics, Tallaght University Hospital, Dublin, Ireland.
| | - Jake M McDonnell
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Grainne Cunniffe
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Joseph S Butler
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Wang JL, Eaton RG, Harrigan ME, Munjal V, Sette KN, Wilson SB, Grossbach AJ. Demineralized Bone Matrix and Fibers in Spinal Fusion. Int J Spine Surg 2023; 17:S28-S34. [PMID: 38135444 PMCID: PMC10753352 DOI: 10.14444/8558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/11/2023] [Indexed: 12/24/2023] Open
Abstract
Formation of bony fusion after arthrodesis depends on osteoinduction, osteoconduction, and osteogenesis. Traditionally, the patient's own bone, or autograft, has been used to provide biological material necessary for these steps. However, the amount of autograft obtainable is often inadequate. Modern spine surgery has adopted the use of many autograft extenders or replacements, such as demineralized bone matrix or fibers. The present article covers the history of bone grafting, the production and technical details of demineralized bone matrix, and the evidence supporting its use in spine fusions.
Collapse
Affiliation(s)
- Joshua L Wang
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Ryan G Eaton
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Markus E Harrigan
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Vikas Munjal
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Katelyn N Sette
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Seth B Wilson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Andrew J Grossbach
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, USA
| |
Collapse
|
7
|
Roldan L, Isaza C, Ospina J, Montoya C, Domínguez J, Orrego S, Correa S. A Comparative Study of HA/DBM Compounds Derived from Bovine and Porcine for Bone Regeneration. J Funct Biomater 2023; 14:439. [PMID: 37754853 PMCID: PMC10532284 DOI: 10.3390/jfb14090439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/25/2023] [Accepted: 08/17/2023] [Indexed: 09/28/2023] Open
Abstract
This comparative study investigated the tissue regeneration and inflammatory response induced by xenografts comprised of hydroxyapatite (HA) and demineralized bone matrix (DBM) extracted from porcine (P) and bovine (B) sources. First, extraction of HA and DBM was independently conducted, followed by chemical and morphological characterization. Second, mixtures of HA/DBM were prepared in 50/50 and 60/40 concentrations, and the chemical, morphological, and mechanical properties were evaluated. A rat calvarial defect model was used to evaluate the tissue regeneration and inflammatory responses at 3 and 6 months. The commercial allograft DBM Puros® was used as a clinical reference. Different variables related to tissue regeneration were evaluated, including tissue thickness regeneration (%), amount of regenerated bone area (%), and amount of regenerated collagen area (%). The inflammatory response was evaluated by quantifying the blood vessel area. Overall, tissue regeneration from porcine grafts was superior to bovine. After 3 months of implantation, the tissue thickness regeneration in the 50/50P compound and the commercial DBM was significantly higher (~99%) than in the bovine materials (~23%). The 50/50P and DBM produced higher tissue regeneration than the naturally healed controls. Similar trends were observed for the regenerated bone and collagen areas. The blood vessel area was correlated with tissue regeneration in the first 3 months of evaluation. After 6 months of implantation, HA/DBM compounds showed less regenerated collagen than the DBM-only xenografts. In addition, all animal-derived xenografts improved tissue regeneration compared with the naturally healed defects. No clinical complications associated with any implanted compound were noted.
Collapse
Affiliation(s)
- Lina Roldan
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
| | - Catalina Isaza
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
| | - Juan Ospina
- Centro de Investigación y Desarrollo Cárnico, Industrias de Alimentos Zenú S.A.S., Grupo Nutresa, Medellín 050044, Colombia;
| | - Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
| | - José Domínguez
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA 19122, USA; (C.M.); (S.O.)
- Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA 191122, USA
| | - Santiago Correa
- Grupo de Investigación en Bioingeniería (GIB), Universidad EAFIT, Medellín 050022, Colombia; (L.R.); (C.I.)
- Escuela de Ciencias Aplicadas e Ingeniería, Universidad EAFIT, Medellín 050022, Colombia
| |
Collapse
|
8
|
Nashi N, Kagda FHY. Current concepts of bone grafting in trauma surgery. J Clin Orthop Trauma 2023; 43:102231. [PMID: 37636005 PMCID: PMC10448478 DOI: 10.1016/j.jcot.2023.102231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/03/2023] [Indexed: 08/29/2023] Open
Abstract
Bone graft in trauma surgery is commonly used in managing bone defects, non-union, fracture related infections, arthrodesis or to provide structural support in fractures. A variety of bone grafts are made available to the treating physician, which includes autograft, allograft and bone graft substitutes. The future of bone grafting in trauma surgery is exciting with the incorporation of technological advancement such as gene therapy, 3D-printing and tissue engineering. Regardless, there are still limitations to what we understand regarding current bone grafting techniques with conflicting literature on their clinical utility and indication. The aim of this review article therefore is to take a step back and critically evaluate the current concepts of bone grafting in trauma surgery, with special emphasis made on reviewing the types of bone graft, biology of bone graft incorporation and indication for its use in various clinical scenarios.
Collapse
Affiliation(s)
- Nazrul Nashi
- University Orthopaedic, Hand and Reconstructive Microsurgery Cluster, National University Health System, Singapore, 1E Kent Ridge Road, 119228, Singapore
| | - Fareed HY. Kagda
- Department of Orthopaedic Surgery, Ng Teng Fong General Hospital, National University Health System, Singapore, 1 Jurong East Street 21, 609606, Singapore
| |
Collapse
|
9
|
Rodham PL, Giannoudis VP, Kanakaris NK, Giannoudis PV. Biological aspects to enhance fracture healing. EFORT Open Rev 2023; 8:264-282. [PMID: 37158338 PMCID: PMC10233810 DOI: 10.1530/eor-23-0047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The ability to enhance fracture healing is paramount in modern orthopaedic trauma, particularly in the management of challenging cases including peri-prosthetic fractures, non-union and acute bone loss. Materials utilised in enhancing fracture healing should ideally be osteogenic, osteoinductive, osteoconductive, and facilitate vascular in-growth. Autologous bone graft remains the gold standard, providing all of these qualities. Limitations to this technique include low graft volume and donor site morbidity, with alternative techniques including the use of allograft or xenograft. Artificial scaffolds can provide an osteoconductive construct, however fail to provide an osteoinductive stimulus, and frequently have poor mechanical properties. Recombinant bone morphogenetic proteins can provide an osteoinductive stimulus; however, their licencing is limited and larger studies are required to clarify their role. For recalcitricant non-unions or high-risk cases, the use of composite graft combining the above techniques provides the highest chances of successfully achieving bony union.
Collapse
Affiliation(s)
- Paul L Rodham
- Academic Department of Trauma & Orthopaedics, Leeds General Infirmary, Leeds, United Kingdom of Great Britain and Northern Ireland
| | - Vasileios P Giannoudis
- Academic Department of Trauma & Orthopaedics, Leeds General Infirmary, Leeds, United Kingdom of Great Britain and Northern Ireland
| | - Nikolaos K Kanakaris
- Academic Department of Trauma & Orthopaedics, Leeds General Infirmary, Leeds, United Kingdom of Great Britain and Northern Ireland
- Department of Trauma & Orthopaedics, University of Leeds, Leeds, United Kingdom of Great Britain and Northern Ireland
| | - Peter V Giannoudis
- Academic Department of Trauma & Orthopaedics, Leeds General Infirmary, Leeds, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
10
|
Arlettaz Y. Augmented osteosynthesis in fragility fracture. Orthop Traumatol Surg Res 2023; 109:103461. [PMID: 36404483 DOI: 10.1016/j.otsr.2022.103461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/06/2022]
Abstract
Due to poor bone quality and complexity, some fractures are difficult to treat, with high risk of failure. Moreover, general health is often poor in elderly patients with multiple comorbidity and poor compliance, necessitating perfect first-line management to avoid re-operation. The armamentarium comprises specific internal fixation implants and also complementary methods such as autologous, homologous or heterologous bone graft or bone substitutes with varying mechanical and biological characteristics. Associating these options is what is mean by "augmented fixation". The present review of augmented osteosynthesis addresses the following questions: What are the characteristics of fragility fractures? Fragility fracture is caused by low-energy trauma on bone with poor structural quality and low mineral density. Treatment aims to enable early mobilization and weight-bearing while avoiding mechanical failure of fixation. Prolonged bedrest, loss of mobility and surgical revision are aggravating and sometimes fatal factors in these fragile patients. What are the biological techniques of fixation augmentation in fragility fracture? Autologous or homologous bone graft are the most widely used biological augmentation techniques. They fill spaces and promote osteoconduction and consolidation. Some bone-like phosphocalcic structures are opening up promising lines of research. What are the non-biological techniques of fixation augmentation in fragility fracture? Hydroxyapatite, phosphocalcic cement and acrylic cement are the most widely used synthetic materials. Biological and mechanical effects are variable according to composition, requiring specific implementation. What are the mechanical techniques of fixation augmentation in fragility fracture? There is at present no consensus as to the augmentation techniques to be applied in fragility fracture. Cerclage or complementary plating, or external fixation associated to internal fixation are possibilities. However, the literature consists only of small series reporting surgical techniques specific to a given surgeon or team. When and how should osteosynthesis for fragility fracture be augmented? The choice of augmentation depends on fracture location, comminution, available material and local experience. The more severe the fracture, the more complex the fixation. The approach needs to be adapted to the preoperative planning and the associated mechanical means (plate, complementary cerclage) and prosthetic replacement should be considered in certain joint fractures or fractures close to load-bearing surfaces. LEVEL OF EVIDENCE: V; expert opinion.
Collapse
Affiliation(s)
- Yvan Arlettaz
- SANTECHABLAIS, Chemin Du Verger 3, 1868 Collombey, Switzerland.
| |
Collapse
|
11
|
Does Conjugation With Structural Carriers Augment the Fusion Properties of Demineralized Bone Matrix? Clin Spine Surg 2021; 34:273-275. [PMID: 33000926 DOI: 10.1097/bsd.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Lui H, Samsonraj RM, Vaquette C, Denbeigh J, Kakar S, Cool SM, Dudakovic A, van Wijnen AJ. Combination of BMP2 and EZH2 Inhibition to Stimulate Osteogenesis in a 3D Bone Reconstruction Model. Tissue Eng Part A 2021; 27:1084-1098. [PMID: 33234056 PMCID: PMC8851245 DOI: 10.1089/ten.tea.2020.0218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
High concentrations of bone morphogenetic protein 2 (BMP2) in bone regeneration cause adverse events (e.g, heterotopic bone formation and acute inflammation). This study examines novel epigenetic strategies (i.e., EZH2 inhibition) for augmenting osteogenesis, thereby aiming to reduce the required BMP2 dose in vivo for bone regeneration and minimize these adverse effects. Human bone marrow-derived mesenchymal stem cells (BMSCs) were grown on three-dimensional (3D)-printed medical-grade polycaprolactone scaffolds and incubated in osteogenic media containing 50 ng/mL BMP2 and/or 5 μM GSK126 (EZH2 inhibitor) for 6 days (n = 3 per group and timepoint). Constructs were harvested for realtime quantitative polymerase chain reaction analysis at Day 10 and immunofluorescence (IF) microscopy at Day 21. After pretreating for 6 days and maintaining in osteogenic media for 4 days, BMSC-seeded scaffolds were also implanted in an immunocompromised subcutaneous murine model (n = 39; 3/group/donor and 3 control scaffolds) for histological analysis at 8 weeks. Pretreatment of BMSCs with BMP2 and BMP2/GSK126 costimulated expression of osteoblast-related genes (e.g., IBSP, SP7, RUNX2, and DLX5), as well as protein accumulation (e.g., collagen type 1/COL1A1 and osteocalcin/BGLAP) based on IF staining. While in vivo implantation for 8 weeks did not result in bone formation, increased angiogenesis was observed in BMP2 and BMP2/GSK126 groups. This study finds that BMP2 and GSK126 costimulate osteogenic differentiation of MSCs on 3D scaffolds in vitro and may contribute to enhanced vascularization when implanted in vivo to support bone formation. Thus, epigenetic priming with EZH2 inhibitors may have translational potential in bone healing by permitting a reduction of BMP2 dosing in vivo to mitigate its side effects. Impact statement While autografts are still the gold standard for bone reconstruction, tissue availability and donor morbidity are significant limitations. Previous attempts to use high concentrations of bone morphogenetic protein 2 (BMP2) have been shown to cause adverse events such as excessive bone formation and acute inflammation. Overall, the utilization of EZH2 inhibitors to modulate gene expression in favor of bone healing has been demonstrated in vitro in a tissue engineering strategy. Our study will pave the way to developing tissue engineering strategies involving GSK126 as an adjuvant to increase the effects of BMP2 for stimulating cells of interest on a three-dimensional scaffold for bone regeneration.
Collapse
Affiliation(s)
- Hayman Lui
- School of Medicine, Griffith University, Gold Coast, Queensland, Australia
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rebekah M. Samsonraj
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Cedryck Vaquette
- School of Dentistry, The University of Queensland, Brisbane, Queensland, Australia
| | - Janet Denbeigh
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Sanjeev Kakar
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Simon M. Cool
- Glycotherapeutics Group, Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Amel Dudakovic
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andre J. van Wijnen
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
13
|
The choice between allograft or demineralized bone matrix is not unambiguous in trauma surgery. Injury 2021; 52 Suppl 2:S23-S28. [PMID: 33189329 DOI: 10.1016/j.injury.2020.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/05/2020] [Indexed: 02/02/2023]
Abstract
In fracture surgery, large bone defects and non-unions often require bone transplantation, and alternatives to autograft bone substitutes in the form of allografts from bone banks and the derivate demineralised bone matrix (DBM) are widely used. With a focus on efficacy, clinical evidence, safety, cost, and patient acceptance, this review evaluated the difference between allogeneic allograft or DBM as a bone substitute in trauma surgery. The efficacy in supporting bone healing from allograft and DBM is highly influenced by donor characteristics and graft processing. Mechanical stability is achieved from a structural graft. Based on the existing literature it is difficult to identify where DBM is useful in trauma surgery, and the level of evidence for the relevant use of allograft bone in trauma is low. The risk of transmitting diseases is negligible, and the lowest risk is from DBM due to the extensive processing procedures. A cost comparison showed that DBM is significantly more expensive. The experiences of dental patients have shown that many patients do not want to receive allografts as a bone substitute. It is not possible to definitively conclude whether it makes a difference if allograft or DBM is used in trauma surgery. It is ultimately the surgeon's individual choice, but this article may be useful in providing considerations before a decision is made.
Collapse
|
14
|
Li C, Mills Z, Zheng Z. Novel cell sources for bone regeneration. MedComm (Beijing) 2021; 2:145-174. [PMID: 34766140 PMCID: PMC8491221 DOI: 10.1002/mco2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 01/09/2023] Open
Abstract
A plethora of both acute and chronic conditions, including traumatic, degenerative, malignant, or congenital disorders, commonly induce bone disorders often associated with severe persisting pain and limited mobility. Over 1 million surgical procedures involving bone excision, bone grafting, and fracture repair are performed each year in the U.S. alone, resulting in immense levels of public health challenges and corresponding financial burdens. Unfortunately, the innate self-healing capacity of bone is often inadequate for larger defects over a critical size. Moreover, as direct transplantation of committed osteoblasts is hindered by deficient cell availability, limited cell spreading, and poor survivability, an urgent need for novel cell sources for bone regeneration is concurrent. Thanks to the development in stem cell biology and cell reprogramming technology, many multipotent and pluripotent cells that manifest promising osteogenic potential are considered the regenerative remedy for bone defects. Considering these cells' investigation is still in its relative infancy, each of them offers their own particular challenges that must be conquered before the large-scale clinical application.
Collapse
Affiliation(s)
- Chenshuang Li
- Department of Orthodontics, School of Dental MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Zane Mills
- College of DentistryUniversity of OklahomaOklahoma CityOklahomaUSA
| | - Zhong Zheng
- Division of Growth and Development, School of DentistryUniversity of CaliforniaLos AngelesCaliforniaUSA
- Department of Surgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
15
|
Verboket RD, Irrle T, Busche Y, Schaible A, Schröder K, Brune JC, Marzi I, Nau C, Henrich D. Fibrous Demineralized Bone Matrix (DBM) Improves Bone Marrow Mononuclear Cell (BMC)-Supported Bone Healing in Large Femoral Bone Defects in Rats. Cells 2021; 10:1249. [PMID: 34069404 PMCID: PMC8158746 DOI: 10.3390/cells10051249] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Regeneration of large bone defects is a major objective in trauma surgery. Bone marrow mononuclear cell (BMC)-supported bone healing was shown to be efficient after immobilization on a scaffold. We hypothesized that fibrous demineralized bone matrix (DBM) in various forms with BMCs is superior to granular DBM. A total of 65 male SD rats were assigned to five treatment groups: syngenic cancellous bone (SCB), fibrous demineralized bone matrix (f-DBM), fibrous demineralized bone matrix densely packed (f-DBM 120%), DBM granules (GDBM) and DBM granules 5% calcium phosphate (GDBM5%Ca2+). BMCs from donor rats were combined with different scaffolds and placed into 5 mm femoral bone defects. After 8 weeks, bone mineral density (BMD), biomechanical stability and histology were assessed. Similar biomechanical properties of f-DBM and SCB defects were observed. Similar bone and cartilage formation was found in all groups, but a significantly bigger residual defect size was found in GDBM. High bone healing scores were found in f-DBM (25) and SCB (25). The application of DBM in fiber form combined with the application of BMCs shows promising results comparable to the gold standard, syngenic cancellous bone. Denser packing of fibers or higher amount of calcium phosphate has no positive effect.
Collapse
Affiliation(s)
- René D. Verboket
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Tanja Irrle
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Yannic Busche
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Alexander Schaible
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Katrin Schröder
- Center of Physiology, Cardiovascular Physiology, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany;
| | - Jan C. Brune
- German Institute for Cell- and Tissue Replacement (DIZG, gemeinnützige GmbH), 12555 Berlin, Germany;
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Christoph Nau
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany; (T.I.); (Y.B.); (A.S.); (I.M.); (C.N.); (D.H.)
| |
Collapse
|
16
|
Rhatomy S, Dilogo IH. Core Decompression and Biological Treatment in Osteonecrosis of the Hip due to Systemic Lupus Erythematosus, 8-year Follow-up: A Case Report. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.5798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Osteonecrosis most commonly affects the femoral head, especially in middle-aged adults. It can be caused by trauma, chronic inflammation, or infection. It leads to collapse of the entire femoral head and culminates with total hip replacement.
CASE REPORT: A 29-year-old female with systemic lupus erythematosus (SLE) had a chief complaint of bilateral hip pain. She was diagnosed with early osteonecrosis of the femoral head (FICAT stage II) using magnetic resonance imaging and core decompression surgery was performed using three small diameter (4 mm) drillings and added biological treatment. She was evaluated with a visual analog scale (VAS), Harris hip score (HHS), and plain radiography in the pre-operative stage and post-operative follow-up.
RESULTS: Functional outcome at 8-year follow-up showed improvement with significantly decreased VAS (pre-operative: 5, post-operative: 0), significant improvement of HHS from 52.725 points (poor) pre-operative to 92.025 points (excellent) post-operative, and subsided femoral head lesion.
CONCLUSIONS: Surgical decompression and biological treatment result in decreased intraosseous pressure and enhanced osteogenesis. It can restrict the SLE disease progression and limit the number of cell death.
Collapse
|
17
|
Shepard NA, Rush AJ, Scarborough NL, Carter AJ, Phillips FM. Demineralized Bone Matrix in Spine Surgery: A Review of Current Applications and Future Trends. Int J Spine Surg 2021; 15:113-119. [PMID: 34376500 DOI: 10.14444/8059] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Graft augmentation for spinal fusion is an area of continued interest, with a wide variety of available products lacking clear recommendations regarding appropriate use. While iliac crest autograft has long been considered the "gold standard", suboptimal fusion rates along with harvest-related concerns continue to drive the need for graft alternatives. There are now multiple options of products with various characteristics that are available. These include demineralized bone matrix (DBM) and demineralized bone fibers (DBF), which have been used increasingly to promote spine fusion. The purpose of this review is to provide an updated narrative on the use of DBM/DBF in spine surgery. METHODS Literature review. RESULTS The clinical application of DBM in spine surgery has evolved since its introduction in the mid-1900s. Early preclinical studies demonstrated its effectiveness in promoting fusion. When used in the cervical, thoracic, and lumbar spine, more recent clinical data suggest similar rates of fusion compared with autograft, although clinical studies are primarily limited to level III or IV evidence with few level I studies. However, significant variability in surgical technique and type of product used in the literature limits its interpretation and overall application. CONCLUSIONS DBM and DBF are bone graft options in spine surgery. Most commonly used as graft extenders, they have the ability to increase the volume of traditional grafting techniques while potentially inducing new bone formation. While the literature supports good fusion rates when used in the lumbar spine and when used with adjuvant cages or additional grafting techniques in the cervical spine, care should be taken when using as a stand-alone product. As new literature emerges, DBM and DBF can be a useful method in a surgeon's armamentarium for fusion-based procedures.
Collapse
Affiliation(s)
- Nicholas A Shepard
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Augustus J Rush
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | | | | | - Frank M Phillips
- Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
18
|
Abstract
BACKGROUND Back pain is a common chief complaint within the United States and is caused by a multitude of etiologies. There are many different treatment modalities for back pain, with a frequent option being spinal fusion procedures. The success of spinal fusion greatly depends on instrumentation, construct design, and bone grafts used in surgery. Bone allografts are important for both structural integrity and providing a scaffold for bone fusion to occur. METHOD Searches were performed using terms "allografts" and "bone" as well as product names in peer reviewed literature Pubmed, Google Scholar, FDA-510k approvals, and clinicaltrials.gov. RESULTS This study is a review of allografts and focuses on currently available products and their success in both animal and clinical studies. CONCLUSION Bone grafts used in surgery are generally categorized into 3 main types: autogenous (from patient's own body), allograft (from cadaveric or living donor), and synthetic. This paper focuses on allografts and provides an overview on the different subtypes with an emphasis on recent product development and uses in spinal fusion surgery.
Collapse
Affiliation(s)
- Justin D. Cohen
- Department of
Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Linda E. Kanim
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Andrew J. Tronits
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hyun W. Bae
- Department of Orthopaedic Surgery, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
19
|
A literature review of commercially available demineralized bone matrix products and their clinical evidence in acute fractures, nonunions, and fusion procedures. CURRENT ORTHOPAEDIC PRACTICE 2021. [DOI: 10.1097/bco.0000000000000971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Sánchez Lázaro JA, Fernández Hernández Ó, Madera González F. Arthroscopic Contribution of Synthetic Graft in Tibiotalocalcaneal Arthroscopic Fusions. Cureus 2020; 12:e12334. [PMID: 33403192 PMCID: PMC7773308 DOI: 10.7759/cureus.12334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Nonunion is a frequent complication of tibiotalocalcaneal arthrodesis. The risk of nonunion increases significantly for those patients with systemic comorbidities and smokers. The purpose of this article is to show the proper way to supplement our arthroscopic fusion surgeries with biomaterial (peptide-15) graft. We have achieved an increase in consolidation rates in complex patient cases. We can conclude that this is a simple and reproducible technique.
Collapse
Affiliation(s)
- Jaime A Sánchez Lázaro
- Orthopedics and Traumatology, Complejo Asistencial Universitario de León, León, ESP.,Orthopedics and Traumatology, Integrated Biomedical Engineering & Health Sciences, León, ESP.,Surgery, Universidad de Salamanca, León, ESP
| | | | | |
Collapse
|
21
|
Simpson CR, Kelly HM, Murphy CM. Synergistic use of biomaterials and licensed therapeutics to manipulate bone remodelling and promote non-union fracture repair. Adv Drug Deliv Rev 2020; 160:212-233. [PMID: 33122088 DOI: 10.1016/j.addr.2020.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022]
Abstract
Disrupted bone metabolism can lead to delayed fracture healing or non-union, often requiring intervention to correct. Although the current clinical gold standard bone graft implants and commercial bone graft substitutes are effective, they possess inherent drawbacks and are limited in their therapeutic capacity for delayed union and non-union repair. Research into advanced biomaterials and therapeutic biomolecules has shown great potential for driving bone regeneration, although few have achieved commercial success or clinical translation. There are a number of therapeutics, which influence bone remodelling, currently licensed for clinical use. Providing an alternative local delivery context for these therapies, can enhance their efficacy and is an emerging trend in bone regenerative therapeutic strategies. This review aims to provide an overview of how biomaterial design has advanced from currently available commercial bone graft substitutes to accommodate previously licensed therapeutics that target local bone restoration and healing in a synergistic manner, and the challenges faced in progressing this research towards clinical reality.
Collapse
Affiliation(s)
- Christopher R Simpson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Helena M Kelly
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland; Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
22
|
Hexter AT, Shahbazi S, Thangarajah T, Kalaskar D, Haddad FS, Blunn G. Characterisation of the tensile properties of Demineralised Cortical Bone when used as an anterior cruciate ligament allograft. J Mech Behav Biomed Mater 2020; 110:103981. [PMID: 32823143 DOI: 10.1016/j.jmbbm.2020.103981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/21/2020] [Accepted: 07/08/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Graft choice in anterior cruciate ligament (ACL) reconstruction remains controversial and some grafts fail due to inadequate osteointegration. Demineralised cortical bone (DCB) is an osteoinductive collagen-based scaffold. The aim of this study was to measure the tensile properties of DCB from different locations and from different ages, and determine its compatibility with current ACL fixation systems. METHODS The tensile properties of DCB manufactured from femur and tibia of young (9 month) and old (2-3 years) sheep was measured to determine the most appropriate graft choice. The ultimate load and stiffness of DCB allograft using two fixation systems, interference screws and sutures tied around screw posts, was measured ex vivo in an ovine ACL reconstruction model. Comparison was made with superficial digital flexor tendon (SDFT) and ovine ACL. RESULTS DCB derived from young tibia had the highest ultimate load and stiffness of 67.7 ± 10.6 N and 130.2 ± 64.3 N/mm respectively. No DCB fixation system reached the published peak in vivo force through the ovine ACL of 150 N. SDFT fixation with interference screws (308.2 ± 87.3 N) did reach the in vivo threshold but was significantly weaker than ovine ACL (871.0 ± 64.2 N). CONCLUSION The tensile properties of DCB were influenced by the donor age and bone. Owing to inferior tensile properties and incompatibility with suspensory fixation devices, this study indicates DCB is inferior to current tendon grafts options for ACL reconstruction.
Collapse
Affiliation(s)
- Adam T Hexter
- Institute of Orthopaedics and Musculoskelatal Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK.
| | - Shirin Shahbazi
- Institute of Orthopaedics and Musculoskelatal Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK
| | - Tanujan Thangarajah
- Institute of Orthopaedics and Musculoskelatal Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK
| | - Deepak Kalaskar
- Institute of Orthopaedics and Musculoskelatal Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex, HA7 4LP, UK
| | - Fares S Haddad
- University College Hospital, 235 Euston Rd, Bloomsbury, London, NW1 2BU, UK
| | - Gordon Blunn
- University of Portsmouth, School of Pharmacy and Biomedical Sciences, Portsmouth, PO1 2DT, UK
| |
Collapse
|
23
|
Marongiu G, Dolci A, Verona M, Capone A. The biology and treatment of acute long-bones diaphyseal fractures: Overview of the current options for bone healing enhancement. Bone Rep 2020; 12:100249. [PMID: 32025538 PMCID: PMC6997516 DOI: 10.1016/j.bonr.2020.100249] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 01/11/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Diaphyseal fractures represent a complex biological entity that could often end into impaired bone-healing, with delayed union and non-union occurring up to 10% of cases. The role of the modern orthopaedic surgeon is to optimize the fracture healing environment, recognize and eliminate possible interfering factors, and choose the best suited surgical fixation technique. The impaired reparative process after surgical intervention can be modulated with different surgical techniques, such as dynamization or exchange nailing after failed intramedullary nailing. Moreover, the mechanical stability of a nail can be improved through augmentation plating, bone grafting or external fixation techniques with satisfactory results. According to the "diamond concept", local therapies, such as osteoconductive scaffolds, bone growth factors, and osteogenic cells can be successfully applied in "polytherapy" for the enhancement of delayed union and non-union of long bones diaphyseal fractures. Moreover, systemic anti-osteoporosis anabolic drugs, such as teriparatide, have been proposed as off-label treatment for bone healing enhancement both in fresh complex shaft fractures and impaired unions, especially for fragility fractures. The article aims to review the biological and mechanical principles of failed reparative osteogenesis of diaphyseal fractures after surgical treatment. Moreover, the evidence about the modern non-surgical and pharmacological options for bone healing enhancement will discussed.
Collapse
Affiliation(s)
- Giuseppe Marongiu
- Orthopaedic and Trauma Clinic, Department of Surgical Sciences, University of Cagliari, Lungomare Poetto, Cagliari 09126, Italy
| | | | | | | |
Collapse
|
24
|
Aldemir Dikici B, Reilly GC, Claeyssens F. Boosting the Osteogenic and Angiogenic Performance of Multiscale Porous Polycaprolactone Scaffolds by In Vitro Generated Extracellular Matrix Decoration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12510-12524. [PMID: 32100541 PMCID: PMC7146758 DOI: 10.1021/acsami.9b23100] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 02/26/2020] [Indexed: 05/05/2023]
Abstract
Tissue engineering (TE)-based bone grafts are favorable alternatives to autografts and allografts. Both biochemical properties and the architectural features of TE scaffolds are crucial in their design process. Synthetic polymers are attractive biomaterials to be used in the manufacturing of TE scaffolds, due to various advantages, such as being relatively inexpensive, enabling precise reproducibility, possessing tunable mechanical/chemical properties, and ease of processing. However, such scaffolds need modifications to improve their limited interaction with biological tissues. Structurally, multiscale porosity is advantageous over single-scale porosity; therefore, in this study, we have considered two key points in the design of a bone repair material; (i) manufacture of multiscale porous scaffolds made of photocurable polycaprolactone (PCL) by a combination of emulsion templating and three-dimensional (3D) printing and (ii) decoration of these scaffolds with the in vitro generated bone-like extracellular matrix (ECM) to create biohybrid scaffolds that have improved biological performance compared to PCL-only scaffolds. Multiscale porous scaffolds were fabricated, bone cells were cultured on them, and then they were decellularized. The biological performance of these constructs was tested in vitro and in vivo. Mesenchymal progenitors were seeded on PCL-only and biohybrid scaffolds. Cells not only showed improved attachment on biohybrid scaffolds but also exhibited a significantly higher rate of cell growth and osteogenic activity. The chick chorioallantoic membrane (CAM) assay was used to explore the angiogenic potential of the biohybrid scaffolds. The CAM assay indicated that the presence of the in vitro generated ECM on polymeric scaffolds resulted in higher angiogenic potential and a high degree of tissue infiltration. This study demonstrated that multiscale porous biohybrid scaffolds present a promising approach to improve bioactivity, encourage precursors to differentiate into mature bones, and to induce angiogenesis.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department
of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| | - Gwendolen C. Reilly
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| | - Frederik Claeyssens
- Department
of Materials Science and Engineering, Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Department
of Materials Science and Engineering, INSIGNEO Institute for In Silico
Medicine, University of Sheffield, The Pam Liversidge Building, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
25
|
Marongiu G, Contini A, Cozzi Lepri A, Donadu M, Verona M, Capone A. The Treatment of Acute Diaphyseal Long-bones Fractures with Orthobiologics and Pharmacological Interventions for Bone Healing Enhancement: A Systematic Review of Clinical Evidence. Bioengineering (Basel) 2020; 7:bioengineering7010022. [PMID: 32102398 PMCID: PMC7148449 DOI: 10.3390/bioengineering7010022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The healing of long bones diaphyseal fractures can be often impaired and eventually end into delayed union and non-union. A number of therapeutic strategies have been proposed in combination with surgical treatment in order to enhance the healing process, such as scaffolds, growth factors, cell therapies and systemic pharmacological treatments. Our aim was to investigate the current evidence of bone healing enhancement of acute long bone diaphyseal fractures. METHODS A systematic review was conducted by using Pubmed/MEDLINE; Embase and Ovid databases. The combination of the search terms "long-bones; diaphyseal fracture; bone healing; growth factors; cell therapies; scaffolds; graft; bone substitutes; orthobiologics; teriparatide". RESULTS The initial search resulted in 4156 articles of which 37 papers fulfilled the inclusion criteria and were the subject of this review. The studies included 1350 patients (837 males and 513 females) with a mean age of 65.3 years old. CONCLUSIONS General lack of high-quality studies exists on the use of adjuvant strategies for bone healing enhancement in acute shaft fractures. Strong evidence supports the use of bone grafts, while only moderate evidence demineralized bone matrix and synthetic ceramics. Conflicting results partially supported the use of growth factors and cell therapies in acute fractures. Teriparatide showed promising results, particularly for atypical femoral fractures and periprosthetic femoral fractures.
Collapse
Affiliation(s)
- Giuseppe Marongiu
- Orthopaedic and Trauma Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.C.); (M.V.); (A.C.)
- Correspondence: or ; Tel.: +39-070-6094368
| | - Andrea Contini
- Orthopaedic and Trauma Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.C.); (M.V.); (A.C.)
| | - Andrea Cozzi Lepri
- Orthopaedic Traumatologic Center, University of Florence, 50121 Florence, Italy;
| | - Matthew Donadu
- Dipartimento di Chimica e Farmacia, University of Sassari, 07100 Sassari, Italy;
| | - Marco Verona
- Orthopaedic and Trauma Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.C.); (M.V.); (A.C.)
| | - Antonio Capone
- Orthopaedic and Trauma Clinic, Department of Surgical Sciences, University of Cagliari, 09124 Cagliari, Italy; (A.C.); (M.V.); (A.C.)
| |
Collapse
|
26
|
Baldwin M, Snelling S, Dakin S, Carr A. Augmenting endogenous repair of soft tissues with nanofibre scaffolds. J R Soc Interface 2019; 15:rsif.2018.0019. [PMID: 29695606 DOI: 10.1098/rsif.2018.0019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/04/2018] [Indexed: 12/21/2022] Open
Abstract
As our ability to engineer nanoscale materials has developed we can now influence endogenous cellular processes with increasing precision. Consequently, the use of biomaterials to induce and guide the repair and regeneration of tissues is a rapidly developing area. This review focuses on soft tissue engineering, it will discuss the types of biomaterial scaffolds available before exploring physical, chemical and biological modifications to synthetic scaffolds. We will consider how these properties, in combination, can provide a precise design process, with the potential to meet the requirements of the injured and diseased soft tissue niche. Finally, we frame our discussions within clinical trial design and the regulatory framework, the consideration of which is fundamental to the successful translation of new biomaterials.
Collapse
Affiliation(s)
- Mathew Baldwin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Sarah Snelling
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Stephanie Dakin
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Andrew Carr
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Zhang H, Yang L, Yang XG, Wang F, Feng JT, Hua KC, Li Q, Hu YC. Demineralized Bone Matrix Carriers and their Clinical Applications: An Overview. Orthop Surg 2019; 11:725-737. [PMID: 31496049 PMCID: PMC6819172 DOI: 10.1111/os.12509] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
Reconstruction of massive bone defects is challenging for orthopaedic clinicians, especially in cases of severe trauma and resection of tumors in various locales. Autologous iliac crest bone graft (ICBG) is the “gold standard” for bone grafting. However, the limited availability and complications at donor sites resulted in seeking other options like allografts and bone graft substitutes. Demineralized bone matrix (DBM) is a form of allograft using acidic solution to remove mineral components, while leaving much of the proteinaceous components native to bone, with small amounts of calcium‐based solids, inorganic phosphates, and some trace cell debris. It is an osteoconductive and osteoinductive biomaterial and is approved as a medical device for use in bone defects and spinal fusion. To pack consistently into the defect sites and stay firmly in the filling parts, DBM products have various forms combined with biocompatible viscous carriers, including sponges, strips, injectable putty, paste, and paste infused with chips. The present review aims to summarize the properties of various kind of viscous carriers and their clinical use combined with DBM in commercially available products. Given DBM'mercially available products. Given DBM;s long clinical track record and commercial accessibility in standard forms, opportunities to further develop and validate DBM as a versatile bone biomaterial in orthopaedic repair and regenerative medicine contexts are attractive.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Bone Tumor, Tianjin Hospital, Tianjin, China.,Graduate School, Tianjin Medical University, Tianjin, China
| | - Li Yang
- Graduate School, Tianjin Medical University, Tianjin, China
| | | | - Feng Wang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jiang-Tao Feng
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Kun-Chi Hua
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Qi Li
- Beijing Wonderful Medical Biomaterial Co. Ltd., Beijing, China
| | - Yong-Cheng Hu
- Department of Bone Tumor, Tianjin Hospital, Tianjin, China
| |
Collapse
|
28
|
Cheung PWH, Fong HK, Wong CS, Cheung JPY. The influence of developmental spinal stenosis on the risk of re-operation on an adjacent segment after decompression-only surgery for lumbar spinal stenosis. Bone Joint J 2019; 101-B:154-161. [PMID: 30700115 DOI: 10.1302/0301-620x.101b2.bjj-2018-1136.r2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Aims The aim of this study was to determine the influence of developmental spinal stenosis (DSS) on the risk of re-operation at an adjacent level. Patients and Methods This was a retrospective study of 235 consecutive patients who had undergone decompression-only surgery for lumbar spinal stenosis and had a minimum five-year follow-up. There were 106 female patients (45.1%) and 129 male patients (54.9%), with a mean age at surgery of 66.8 years (sd 11.3). We excluded those with adult deformity and spondylolisthesis. Presenting symptoms, levels operated on initially and at re-operation were studied. MRI measurements included the anteroposterior diameter of the bony spinal canal, the degree of disc degeneration, and the thickness of the ligamentum flavum. DSS was defined by comparative measurements of the bony spinal canal. Risk factors for re-operation at the adjacent level were determined and included in a multivariate stepwise logistic regression for prediction modelling. Odds ratios (ORs) with 95% confidence intervals were calculated. Results Of the 235 patients, 21.7% required re-operation at an adjacent segment. Re-operation at an adjacent segment was associated with DSS (p = 0.026), the number of levels decompressed (p = 0.008), and age at surgery (p = 0.013). Multivariate regression model (p < 0.001) controlled for other confounders showed that DSS was a significant predictor of re-operation at an adjacent segment, with an adjusted OR of 3.93. Conclusion Patients with DSS who have undergone lumbar spinal decompression are 3.9 times more likely to undergo future surgery at an adjacent level. This is a poor prognostic indicator that can be identified prior to index decompression surgery.
Collapse
Affiliation(s)
- P. W. H. Cheung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - H. K. Fong
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - C. S. Wong
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - J. P. Y. Cheung
- Department of Orthopaedics and Traumatology, Queen Mary Hospital, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| |
Collapse
|
29
|
Lauthe O, Soubeyrand M, Babinet A, Dumaine V, Anract P, Biau DJ. The indications and donor-site morbidity of tibial cortical strut autografts in the management of defects in long bones. Bone Joint J 2018; 100-B:667-674. [PMID: 29701102 DOI: 10.1302/0301-620x.100b5.bjj-2017-0577.r2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Aims The primary aim of this study was to determine the morbidity of a tibial strut autograft and characterize the rate of bony union following its use. Patients and Methods We retrospectively assessed a series of 104 patients from a single centre who were treated with a tibial strut autograft of > 5 cm in length. A total of 30 had a segmental reconstruction with continuity of bone, 27 had a segmental reconstruction without continuity of bone, 29 had an arthrodesis and 18 had a nonunion. Donor-site morbidity was defined as any event that required a modification of the postoperative management. Union was assessed clinically and radiologically at a median of 36 months (IQR, 14 to 74). Results Donor-site morbidity occurred in four patients (4%; 95% confidence interval (CI) 1 to 10). One patient had a stress fracture of the tibia, which healed with a varus deformity, requiring an osteotomy. Two patients required evacuation of a haematoma and one developed anterior compartment syndrome which required fasciotomies. The cumulative probability of union was 90% (95% CI 80 to 96) at five years. The type of reconstruction (p = 0.018), continuity of bone (p = 0.006) and length of tibial graft (p = 0.037) were associated with the time to union. Conclusion The tibial strut autograft has a low risk of morbidity and provides adequate bone stock for treating various defects of long bones. Cite this article: Bone Joint J 2018;100-B:667-74.
Collapse
Affiliation(s)
- O Lauthe
- Orthopaedic Department, Hopital Cochin, Paris, France
| | - M Soubeyrand
- Orthopaedic Department, Hopital Bicetre, Paris, France
| | - A Babinet
- Orthopaedic Department, Hopital Cochin, Paris, France
| | - V Dumaine
- Orthopaedic Department, Hopital Cochin, Paris, France
| | - P Anract
- Orthopaedic Department, Hopital Cochin and Universite Paris Descartes and INSERM U1153, Paris, France
| | - D J Biau
- Orthopaedic Department, Hopital Cochin and Universite Paris Descartes and INSERM U1153, Paris, France
| |
Collapse
|