1
|
Sawai K, Goi T, Kimura Y, Koneri K. Reduction of Blood Oxidative Stress Following Colorectal Cancer Resection. Cancers (Basel) 2024; 16:3550. [PMID: 39456644 PMCID: PMC11505646 DOI: 10.3390/cancers16203550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Colorectal cancer is a major global health burden, with surgical resection being the standard treatment aimed at curative tumor removal. Oxidative stress plays a crucial role in colorectal cancer progression and prognosis. This study hypothesized that physical removal of colorectal cancer, a primary source of oxidative stress, would reduce blood levels of reactive oxygen metabolite derivatives (d-ROMs), a marker of oxidative stress, and biologic antioxidant potential (BAP) levels, a marker of antioxidant potential. METHODS This study included 123 patients who underwent radical resection for colorectal cancer. d-ROM and BAP levels were measured before and one month after surgery. RESULTS The clinicopathological analysis showed a correlation between preoperative d-ROM levels and tumor size (p < 0.001). This study confirmed a significant reduction in d-ROM levels following tumor resection, indicating reduced systemic oxidative stress. The reduction was significant in stages II and III, but not in stage I. The d-ROM ratio before and after tumor resection was significantly higher in cases with positive lymph node metastasis and larger tumor size. BAP levels showed no significant changes post-surgery. CONCLUSIONS These results suggest that d-ROMs could serve as a valuable biomarker for monitoring tumor burden and surgical efficacy in patients with colorectal cancer.
Collapse
Affiliation(s)
- Katsuji Sawai
- First Department of Surgery, University of Fukui, Fukui 910-1193, Japan; (T.G.); (Y.K.); (K.K.)
| | | | | | | |
Collapse
|
2
|
Moghadam SG, Ebrahimpour M, Alavizadeh SH, Kesharwani P, Sahebkar A. The association between oxidized low-density lipoprotein and cancer: An emerging targeted therapeutic approach? Bioorg Med Chem Lett 2024; 106:129762. [PMID: 38649117 DOI: 10.1016/j.bmcl.2024.129762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Lipids play an important role in varying vital cellular processes including cell growth and division. Elevated levels of low-density lipoprotein (LDL) and oxidized-LDL (ox-LDL), and overexpression of the corresponding receptors including LDL receptor (LDLR), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and cluster of differentiation 36 (CD36), have shown strong correlations with different facets of carcinogenesis including proliferation, invasion, and angiogenesis. Furthermore, a high serum level of LOX-1 is considered as a poor prognostic factor in many types of cancer including colorectal cancer. Ox-LDL could contribute to cancer progression and metastasis through endothelial-to-mesenchymal transition (EMT) and autophagy. Thus, many studies have shed light on the significant role of ox-LDL as a potential therapeutic target for cancer therapy. In various repurposing approaches, anti-dyslipidemia agents, phytochemicals, autophagy modulators as well as recently developed ldl-like nanoparticles have been investigated as potential tumor therapeutic agents by targeting oxidized-LDL/LOX-1 pathways. Herein, we reviewed the role of oxidized-LDL and LOX-1 in cancer progression, invasion, metastasis, and also cancer-associated angiogenesis. Moreover, we addressed therapeutic utility of several compounds that proved to be capable of targeting the metabolic moieties in cancer. This review provides insights on the potential impact of targeting LDL and ox-LDL in cancer therapy and their future biomedical implementations.
Collapse
Affiliation(s)
- Samin Ghorbani Moghadam
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrshad Ebrahimpour
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Tokutake K, Morelos-Gomez A, Hoshi KI, Katouda M, Tejima S, Endo M. Artificial intelligence for the prevention and prediction of colorectal neoplasms. J Transl Med 2023; 21:431. [PMID: 37400891 DOI: 10.1186/s12967-023-04258-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 06/09/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Colonoscopy is a useful as a cancer screening test. However, in countries with limited medical resources, there are restrictions on the widespread use of endoscopy. Non-invasive screening methods to determine whether a patient requires a colonoscopy are thus desired. Here, we investigated whether artificial intelligence (AI) can predict colorectal neoplasia. METHODS We used data from physical exams and blood analyses to determine the incidence of colorectal polyp. However, these features exhibit highly overlapping classes. The use of a kernel density estimator (KDE)-based transformation improved the separability of both classes. RESULTS Along with an adequate polyp size threshold, the optimal machine learning (ML) models' performance provided 0.37 and 0.39 Matthews correlation coefficient (MCC) for the datasets of men and women, respectively. The models exhibit a higher discrimination than fecal occult blood test with 0.047 and 0.074 MCC for men and women, respectively. CONCLUSION The ML model can be chosen according to the desired polyp size discrimination threshold, may suggest further colorectal screening, and possible adenoma size. The KDE feature transformation could serve to score each biomarker and background factors (health lifestyles) to suggest measures to be taken against colorectal adenoma growth. All the information that the AI model provides can lower the workload for healthcare providers and be implemented in health care systems with scarce resources. Furthermore, risk stratification may help us to optimize the efficiency of resources for screening colonoscopy.
Collapse
Affiliation(s)
- Kohjiro Tokutake
- Department of Gastroenterology, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, 380-8582, Japan.
| | | | - Ken-Ichi Hoshi
- Department of Health Checkup Center, Nagano Red Cross Hospital, 5-22-1 Wakasato, Nagano, 380-8582, Japan
| | - Michio Katouda
- Research Organization for Information Science & Technology, 2-32-3, Kitashinagawa, Shinagawa-ku, Tokyo, 140-0001, Japan
| | - Syogo Tejima
- Research Organization for Information Science & Technology, 2-32-3, Kitashinagawa, Shinagawa-ku, Tokyo, 140-0001, Japan
| | - Morinobu Endo
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan.
| |
Collapse
|
4
|
Han M, Wang H, Yang S, Zhu S, Zhao G, Shi H, Li P. Triglyceride glucose index and Atherogenic index of plasma for predicting colorectal neoplasms in patients without cardiovascular diseases. Front Oncol 2022; 12:1031259. [PMID: 36452491 PMCID: PMC9702061 DOI: 10.3389/fonc.2022.1031259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/27/2022] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND AND AIMS Colorectal neoplasms (CRN) include colorectal cancer (CRC) and colorectal adenoma (CRA). The relationship between CRN and triglyceride-glucose (TyG) index or between CRN and atherogenic index of plasma (AIP) is unclear. This study aims to investigate the roles of TyG index and AIP in predicting CRN in people without cardiovascular disease (CVD). METHODS 2409 patients without CVD underwent colonoscopy were enrolled. Clinical information and relevant laboratory test results of these patients were collected and recorded. According to endoscopic and pathological results, all participants were divided into a neoplasms group and a non-neoplasms group. The TyG index was calculated as ln (TGs×FPG/2), while AIP was calculated as log (TGs/HDL-C). We used uni- and multivariate logistic regression and restricted cubic spline (RCS) to analyze the association between the TyG inedx, AIP and CRN, develop predictive models and construct the nomograms. Receiver operating characteristic (ROC) curves were utilized to evaluate the predictive value for CRN. RESULTS Participants in the neoplasms group were more likely to be older, have higher TyG index, higher AIP and higher rates of fecal occult blood test positivity, and were more likely to be male, smokers and those with the family history of CRC (P < 0.05). The higher TyG index was related to the higher risk of CRN [OR (95% CI): 1.23 (1.08 - 1.41), P = 0.003]. The higher AIP was related to the higher risk of CRN [OR (95% CI): 1.55 (1.16 - 2.06), P = 0.003]. These two indicators are better for predicting CRN in women than men. The combined use of the TyG index and other independent risk factors (age, sex, smoking status, family history and FOBT) to distinguish CRN was effective, with a sensitivity of 61.0%, a specificity of 65.1% and an AUC of 0.669 (95%CI, 0.639 - 0.698). Likewise, the combined use of the AIP and other independent risk factors to distinguish CRN was also effective, the model had an overall 56.3% sensitivity and 68.7% specificity with an AUC of 0.667 (95%CI, 0.638 - 0.697). CONCLUSION This study showed that the TyG index and the AIP might be biomarkers that could be used to predict the risk of CRN in patients without CVD.
Collapse
Affiliation(s)
- Muzhou Han
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Hao Wang
- Department of Clinical Epidemiology and Evidence-based Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuyue Yang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Siying Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Guiping Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Haiyun Shi
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Diseases, Beijing Digestive Disease Center, Beijing, China
| |
Collapse
|
5
|
Lockhart JS, Sumagin R. Non-Canonical Functions of Myeloperoxidase in Immune Regulation, Tissue Inflammation and Cancer. Int J Mol Sci 2022; 23:ijms232012250. [PMID: 36293108 PMCID: PMC9603794 DOI: 10.3390/ijms232012250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Myeloperoxidase (MPO) is one of the most abundantly expressed proteins in neutrophils. It serves as a critical component of the antimicrobial defense system, facilitating microbial killing via generation of reactive oxygen species (ROS). Interestingly, emerging evidence indicates that in addition to the well-recognized canonical antimicrobial function of MPO, it can directly or indirectly impact immune cells and tissue responses in homeostatic and disease states. Here, we highlight the emerging non-canonical functions of MPO, including its impact on neutrophil longevity, activation and trafficking in inflammation, its interactions with other immune cells, and how these interactions shape disease outcomes. We further discuss MPO interactions with barrier forming endothelial and epithelial cells, specialized cells of the central nervous system (CNS) and its involvement in cancer progression. Such diverse function and the MPO association with numerous inflammatory disorders make it an attractive target for therapies aimed at resolving inflammation and limiting inflammation-associated tissue damage. However, while considering MPO inhibition as a potential therapy, one must account for the diverse impact of MPO activity on various cellular compartments both in health and disease.
Collapse
|
6
|
Pan Z, Hu Z, Guan L, Zhang L, Gao X, Yang L, Gong T, Hu Y, Zhao Y, Yu H. Diagnostic value of serum sphingolipids in patients with colorectal cancer. Analyst 2022; 147:2189-2197. [PMID: 35441613 DOI: 10.1039/d1an02239c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Abnormal lipid metabolism affects the regulation of tumor progression, though use of serum lipids and sphingolipids for disease progression identification is uncertain. Methods: Serum samples from 51 healthy volunteers and 76 patients were collected and analyzed by liquid chromatography tandem mass spectrometry. Results: Levels of serum total cholesterol and high-density lipoprotein were significantly lower in colorectal cancer patients. Multivariate analysis demonstrated distinct sphingolipid profiles between healthy individuals and patients. Of 106 sphingolipids, 15 metabolites that showed statistical significance were selected, and receiver operating characteristic analysis of these metabolites yielded an area under the curve of 0.868 to 0.9 by machine learning algorithms for distinguishing colorectal cancer from a healthy status. Conclusions: Healthy individuals, polyps patients and colorectal cancer patients have different serum sphingolipid signatures. Serum sphingolipids might be used as biomarkers for early detection or prediction of colorectal cancer.
Collapse
Affiliation(s)
- Ziyue Pan
- Department of Gastroenterology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zuojian Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Li Guan
- Department of Gastroenterology, Huadong Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Zhang
- Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Xia Gao
- Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Lujie Yang
- Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Tianqi Gong
- Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Yanling Hu
- Department of Gastroenterology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yanping Zhao
- Department of Gastroenterology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Hongxiu Yu
- Department of Gastroenterology, Minhang Branch, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Shanghai Stomatological Hospital & Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Lipoproteins as Markers for Monitoring Cancer Progression. J Lipids 2021; 2021:8180424. [PMID: 34552769 PMCID: PMC8452421 DOI: 10.1155/2021/8180424] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/20/2021] [Indexed: 11/29/2022] Open
Abstract
Lipoproteins are among the contributors of energy for the survival of cancer cells. Studies indicate there are complex functions and metabolism of lipoproteins in cancer. The current review is aimed at providing updates from studies related to the monitoring of lipoproteins in different types of cancer. This had led to numerous clinical and experimental studies. The review covers the major lipoproteins such as LDL cholesterol (LDL-C), oxidized low-density lipoprotein cholesterol (oxLDL-C), very low-density lipoprotein cholesterol (VLDL-C), and high-density lipoprotein cholesterol (HDL-C). This is mainly due to increasing evidence from clinical and experimental studies that relate association of lipoproteins with cancer. Generally, a significant association exists between LDL-C with carcinogenesis and high oxLDL with metastasis. This warrants further investigations to include Mendelian randomization design and to be conducted in a larger population to confirm the significance of LDL-C and its oxidized form as prognostic markers of cancer.
Collapse
|
8
|
Improvement in Redox Homeostasis after Cytoreductive Surgery in Colorectal Adenocarcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8864905. [PMID: 34381561 PMCID: PMC8352694 DOI: 10.1155/2021/8864905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) as one the most common cancer type is associated with oxidative stress. Surgery is the only curative modality for early-stage CRC. The aim of this study was to evaluate the oxidative damage biomarkers as well as enzymatic and nonenzymatic antioxidants in patients with CRC before and after tumor resection and in healthy controls. 60 patients with stage I/II colorectal adenocarcinoma and 43 healthy controls were recruited in this study. We measured plasma levels of oxidative damage biomarkers, including advanced oxidation protein products (AOPP), advanced glycation end products (AGEs), malondialdehyde (MDA), and oxidized low-density lipoprotein (ox-LDL) at baseline and after tumor removal. We also evaluated the plasma activity of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) as enzymatic antioxidants and the ferric reducing antioxidant power (FRAP) assay for nonenzymatic antioxidant capacity. Patients with CRC had significantly higher AGE, AOPP, MDA, and ox-LDL and also FRAP levels and higher SOD and GPx and lower CAT activity levels compared to healthy controls (p < 0.05). We did not observe any statistically significant correlation between redox biomarkers and the size and stage of the tumor. AGEs (72.49 ± 4.7 vs. 67.93 ± 8.8, p < 0.001), AOPP (137.64 ± 21.9 vs. 119.08 ± 33.1, p < 0.001), MDA (3.56 ± 0.30 vs. 3.05 ± 0.33, p < 0.001), and ox-LDL (19.78 ± 0.97 vs. 16.94 ± 1.02, p < 0.001) concentrations reduced significantly after tumor removal. The largest effect sizes were found in ox-LDL (d = -2.853, 95% CI 2.50-3.19) and MDA (d = -1.617, 95% CI 0.43-0.57). Serum FRAP levels (1097.5 ± 156.7 vs. 1239.3 ± 290, p < 0.001) and CAT (2.34 ± 0.34 vs. 2.63 ± 0.38, p < 0.001), GPx (102.37 ± 6.58 vs. 108.03 ± 6.95, p < 0.001), and SOD (5.13 ± 0.39 vs. 5.53 ± 0.31, p < 0.001) activity levels increased significantly after surgery. The largest effect sizes among antioxidants were seen in SOD (d = 1.135, 95% CI 0.46-0.34) and GPx (d = 0.836, 95% CI 0.35-0.23). This study indicated that patients with colorectal cancer had higher levels of oxidative stress and antioxidant activity compared to healthy controls. After surgical resection of tumor, we observed a substantial improvement in redox homeostasis.
Collapse
|
9
|
Li H, Vanarsa K, Zhang T, Soomro S, Cicalese PA, Duran V, Dasari S, Lee KH, Pedroza C, Kisiel JB, Qin H, Bresalier RS, Chia N, Mohan C. Comprehensive aptamer-based screen of 1317 proteins uncovers improved stool protein markers of colorectal cancer. J Gastroenterol 2021; 56:659-672. [PMID: 34117903 DOI: 10.1007/s00535-021-01795-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND To screen and validate novel stool protein biomarkers of colorectal cancer (CRC). METHODS A novel aptamer-based screen of 1317 proteins was used to uncover elevated proteins in the stool of patients with CRC, as compared to healthy controls (HCs) in a discovery cohort. Selected biomarker candidates from the discovery cohort were ELISA validated in three independent cross-sectional cohorts comprises 76 CRC patients, 15 adenoma patients, and 63 healthy controls, from two different ethnicities. The expression of the potential stool biomarkers within CRC tissue was evaluated using single-cell RNA-seq datasets. RESULTS A total of 92 proteins were significantly elevated in CRC samples as compared to HCs in the discovery cohort. Among Caucasians, the 5 most discriminatory proteins among the 16 selected proteins, ordered by their ability to distinguish CRC from adenoma and healthy controls, were MMP9, haptoglobin, myeloperoxidase, fibrinogen, and adiponectin. Except myeloperoxidase, the others were significantly associated with depth of tumor invasion. The 8 stool proteins with the highest AUC values were also discriminatory in a second cohort of Indian CRC patients. Several of the stool biomarkers elevated in CRC were also expressed within CRC tissue, based on the single-cell RNA-seq analysis. CONCLUSIONS Stool MMP9, fibrinogen, myeloperoxidase, and haptoglobin emerged as promising CRC stool biomarkers, outperforming stool Hemoglobin. Longitudinal studies are warranted to assess the clinical utility of these novel biomarkers in early diagnosis of CRC.
Collapse
Affiliation(s)
- Hao Li
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Kamala Vanarsa
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Ting Zhang
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Sanam Soomro
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | | | - Valeria Duran
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Shobha Dasari
- Department of Biomedical Engineering, University of Houston, Houston, USA
| | - Kyung Hyun Lee
- Center for Clinical Research and Evidence-Based Medicine, McGovern Medical School, UT Health Science Center At Houston, Houston, USA
| | - Claudia Pedroza
- Center for Clinical Research and Evidence-Based Medicine, McGovern Medical School, UT Health Science Center At Houston, Houston, USA
| | - John B Kisiel
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, USA
| | - Huanlong Qin
- Department of General Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Robert S Bresalier
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - Nicholas Chia
- Department of Surgical Research, Mayo Clinic, Rochester, USA
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, USA.
| |
Collapse
|
10
|
De A, Chen W, Li H, Wright JR, Lamendella R, Lukin DJ, Szymczak WA, Sun K, Kelly L, Ghosh S, Kearns DB, He Z, Jobin C, Luo X, Byju A, Chatterjee S, Yeoh BS, Vijay-Kumar M, Tang JX, Prajapati M, Bartnikas TB, Mani S. Bacterial Swarmers Enriched During Intestinal Stress Ameliorate Damage. Gastroenterology 2021; 161:211-224. [PMID: 33741315 PMCID: PMC8601393 DOI: 10.1053/j.gastro.2021.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Bacterial swarming, a collective movement on a surface, has rarely been associated with human pathophysiology. This study aims to define a role for bacterial swarmers in amelioration of intestinal stress. METHODS We developed a polymicrobial plate agar assay to detect swarming and screened mice and humans with intestinal stress and inflammation. From chemically induced colitis in mice, as well as humans with inflammatory bowel disease, we developed techniques to isolate the dominant swarmers. We developed swarm-deficient but growth and swim-competent mutant bacteria as isogenic controls. We performed bacterial reinoculation studies in mice with colitis, fecal 16S, and meta-transcriptomic analyses, as well as in vitro microbial interaction studies. RESULTS We show that bacterial swarmers are highly predictive of intestinal stress in mice and humans. We isolated a novel Enterobacter swarming strain, SM3, from mouse feces. SM3 and other known commensal swarmers, in contrast to their mutant strains, abrogated intestinal inflammation in mice. Treatment of colitic mice with SM3, but not its mutants, enriched beneficial fecal anaerobes belonging to the family of Bacteroidales S24-7. We observed SM3 swarming associated pathways in the in vivo fecal meta-transcriptomes. In vitro growth of S24-7 was enriched in presence of SM3 or its mutants; however, because SM3, but not mutants, induced S24-7 in vivo, we concluded that swarming plays an essential role in disseminating SM3 in vivo. CONCLUSIONS Overall, our work identified a new but counterintuitive paradigm in which intestinal stress allows for the emergence of swarming bacteria; however, these bacteria act to heal intestinal inflammation.
Collapse
Affiliation(s)
- Arpan De
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Weijie Chen
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA,Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912, USA
| | - Hao Li
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | - Dana J. Lukin
- Jill Roberts Center for Inflammatory Bowel Disease, 1283 York Avenue, New York, NY 10065, USA
| | - Wendy A. Szymczak
- Department of Pathology, Montefiore Medical Center, 111 E 210th Street, Bronx, NY 10467, USA
| | - Katherine Sun
- Department of Pathology, NYU Langone Health, 560 First Avenue, New York, NY 10016, USA
| | - Libusha Kelly
- Department of Systems & Computational Biology, and Department of Microbiology & Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Subho Ghosh
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Daniel B. Kearns
- Department of Biology, Indiana University Bloomington, 107 S. Indiana Avenue, Bloomington, IN 47405, USA
| | - Zhen He
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Christian Jobin
- Department of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Xiaoping Luo
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Arjun Byju
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Shirshendu Chatterjee
- Department of Mathematics, The City University of New York, City College & Graduate Center, New York, NY 10031, USA
| | - Beng San Yeoh
- UT-Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo, College of Medicine & Life Sciences, 3000 Transverse Dr, Mail Stop 1008, Toledo, OH 43614, USA
| | - Matam Vijay-Kumar
- UT-Microbiome Consortium, Department of Physiology & Pharmacology, University of Toledo, College of Medicine & Life Sciences, 3000 Transverse Dr, Mail Stop 1008, Toledo, OH 43614, USA
| | - Jay X. Tang
- Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912, USA
| | - Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
| | - Sridhar Mani
- Department of Medicine, Genetics and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
11
|
Ternet C, Kiel C. Signaling pathways in intestinal homeostasis and colorectal cancer: KRAS at centre stage. Cell Commun Signal 2021; 19:31. [PMID: 33691728 PMCID: PMC7945333 DOI: 10.1186/s12964-021-00712-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 02/06/2023] Open
Abstract
The intestinal epithelium acts as a physical barrier that separates the intestinal microbiota from the host and is critical for preserving intestinal homeostasis. The barrier is formed by tightly linked intestinal epithelial cells (IECs) (i.e. enterocytes, goblet cells, neuroendocrine cells, tuft cells, Paneth cells, and M cells), which constantly self-renew and shed. IECs also communicate with microbiota, coordinate innate and adaptive effector cell functions. In this review, we summarize the signaling pathways contributing to intestinal cell fates and homeostasis functions. We focus especially on intestinal stem cell proliferation, cell junction formation, remodelling, hypoxia, the impact of intestinal microbiota, the immune system, inflammation, and metabolism. Recognizing the critical role of KRAS mutants in colorectal cancer, we highlight the connections of KRAS signaling pathways in coordinating these functions. Furthermore, we review the impact of KRAS colorectal cancer mutants on pathway rewiring associated with disruption and dysfunction of the normal intestinal homeostasis. Given that KRAS is still considered undruggable and the development of treatments that directly target KRAS are unlikely, we discuss the suitability of targeting pathways downstream of KRAS as well as alterations of cell extrinsic/microenvironmental factors as possible targets for modulating signaling pathways in colorectal cancer. Video Abstract
Collapse
Affiliation(s)
- Camille Ternet
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland
| | - Christina Kiel
- School of Medicine, Systems Biology Ireland, and UCD Charles Institute of Dermatology, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
12
|
van Steenwijk HP, Bast A, de Boer A. The Role of Circulating Lycopene in Low-Grade Chronic Inflammation: A Systematic Review of the Literature. Molecules 2020; 25:molecules25194378. [PMID: 32977711 PMCID: PMC7582666 DOI: 10.3390/molecules25194378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND AIMS In recent years, it has become clear that low-grade chronic inflammation is involved in the onset and progression of many non-communicable diseases. Many studies have investigated the association between inflammation and lycopene, however, results have been inconsistent. This systematic review aims to determine the impact of circulating lycopene on inflammation and to investigate the effect of consuming tomato products and/or lycopene supplements on markers of inflammation. METHODS Eligible studies, published before March 2020, were identified from PubMed, EBSCOhost and ScienceDirect. Human studies published in English, that evaluated the effect of circulating lycopene in relation to inflammation biomarkers were screened and included. Studies assessing lycopene intake or general intake of carotenoids/antioxidants without measuring circulating lycopene, as well as those not reporting inflammation biomarkers as outcomes, were excluded. RESULTS Out of 80 publications identified and screened, 35 met the inclusion criteria. Results from 18 cross-sectional studies suggest that lycopene levels are adversely affected during inflammation and homeostatic imbalance. Most of the 17 included intervention studies reported increased circulating lycopene levels after tomato/lycopene supplementation, but almost no changes in inflammation biomarkers were observed. CONCLUSIONS There is little evidence that increasing tomato intake or lycopene supplementation diminuates this inflammation. However, depletion of lycopene may be one of the first signs of low-grade inflammation. The available data thereby imply that it is beneficial to consume lycopene-rich foods occasionally to stay healthy and keep circulating lycopene at a basal level.
Collapse
Affiliation(s)
- Hidde P. van Steenwijk
- Campus Venlo, Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
- Correspondence: ; Tel.: +4-3388-3666
| | - Aalt Bast
- Campus Venlo, University College Venlo, Maastricht University, 5911 BV Venlo, The Netherlands;
- Department of Pharmacology & Toxicology, Medicine and Life Sciences, Faculty of Health, Maastricht University, 5911 BV Venlo, The Netherlands
| | - Alie de Boer
- Campus Venlo, Food Claims Centre Venlo, Faculty of Science and Engineering, Maastricht University, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
13
|
Sannasimuthu A, Ramani M, Pasupuleti M, Saraswathi NT, Arasu MV, Al-Dhabi NA, Arshad A, Mala K, Arockiaraj J. Peroxiredoxin of Arthrospira platensis derived short molecule YT12 influences antioxidant and anticancer activity. Cell Biol Int 2020; 44:2231-2242. [PMID: 32716104 DOI: 10.1002/cbin.11431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/24/2020] [Accepted: 07/25/2020] [Indexed: 12/17/2022]
Abstract
This study demonstrates both the antioxidant and anticancer potential of the novel short molecule YT12 derived from peroxiredoxin (Prx) of spirulina, Arthrospira platensis (Ap). ApPrx showed significant reduction in reactive oxygen species (ROS) against hydrogen peroxide (H2 O2 ) stress. The complementary DNA sequence of ApPrx contained 706 nucleotides and its coding region possessed 546 nucleotides between position 115 and 660. Real-time quantitative reverse transcription polymerase chain reaction analysis confirmed the messenger RNA expression of ApPrx due to H2 O2 exposure in spirulina cells at regular intervals, in which the highest expression was noticed on Day 20. Cytotoxicity assay was performed using human peripheral blood mononuclear cells, and revealed that at 10 μM, the YT12 did not exhibit any notable toxicity. Furthermore, ROS scavenging activity of YT12 was performed using DCF-DA assay, in which YT12 scavenged a significant amount of ROS at 25 μM in H2 O2 -treated blood leukocytes. The intracellular ROS in human colon adenocarcinoma cells (HT-29) was regulated by oxidative stress, where the YT12 scavenges ROS in HT-29 cells at 12.5 μM. Findings show that YT12 peptide has anticancer activity, when treated against HT-29 cells. Through the MTT assay, YT12 showed vital cytotoxicity against HT-29 cells. These finding suggested that YT12 is a potent antioxidant molecule which defends ROS against oxidative stress and plays a role in redox balance.
Collapse
Affiliation(s)
- Anbazahan Sannasimuthu
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Madhura Ramani
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Nambiappan T Saraswathi
- Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Naif Abdulla Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I-AQUAS), Universiti Putra Malaysia, Port Dickson, Negeri Sembilan, Malaysia.,Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kanchana Mala
- Department of Medical Research, Medical College Hospital and Research Centre, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Jesu Arockiaraj
- SRM Research Institute, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
14
|
Role of bioactive lipofishins in prevention of inflammation and colon cancer. Semin Cancer Biol 2019; 56:175-184. [DOI: 10.1016/j.semcancer.2017.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
|
15
|
Metabolomics Analysis in Serum from Patients with Colorectal Polyp and Colorectal Cancer by 1H-NMR Spectrometry. DISEASE MARKERS 2019; 2019:3491852. [PMID: 31089393 PMCID: PMC6476004 DOI: 10.1155/2019/3491852] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/07/2018] [Accepted: 01/30/2019] [Indexed: 12/16/2022]
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Colorectal adenomatous polyps are at high risk for the development of CRC. In this report, we described the metabolic changes in the sera from patients with colorectal polyps and CRC by using the NMR-based metabolomics. 110 serum samples were collected from patients and healthy controls, including 40 CRC patients, 32 colorectal polyp patients, and 38 healthy controls. The metabolic profiles and differential metabolites of sera were analyzed by multivariate statistical analysis (MSA), including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA) methods. A total of 23 differential metabolites were identified from MSA. According to the pathway analysis and multivariate ROC curve-based exploratory analysis by using the relative concentrations of differential metabolites, we found abnormal metabolic pathways and potential biomarkers involved with the colorectal polyp and CRC. The results showed that the pyruvate metabolism and glycerolipid metabolism were activated in colorectal polyps. And the glycolysis and glycine, serine, and threonine metabolism were activated in CRC. The changed metabolism may promote cellular proliferation. In addition, we found that the rates of acetate/glycerol and lactate/citrate could be the potential biomarkers in colorectal polyp and CRC, respectively. The application of 1H-NMR metabolomics analysis in serum has interesting potential as a new detection and diagnostic tool for early diagnosis of CRC.
Collapse
|
16
|
Moradi-Marjaneh R, Hassanian SM, Mehramiz M, Rezayi M, Ferns GA, Khazaei M, Avan A. Reactive oxygen species in colorectal cancer: The therapeutic impact and its potential roles in tumor progression via perturbation of cellular and physiological dysregulated pathways. J Cell Physiol 2018; 234:10072-10079. [PMID: 30515827 DOI: 10.1002/jcp.27881] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 11/15/2018] [Indexed: 01/17/2023]
Abstract
Reactive oxygen species (ROS) are produced by mitochondria during metabolism. In physiological states, the production of ROS and their elimination by antioxidants are kept in balance. However, in pathological states, elevated levels of ROS interact with susceptible cellular target compounds including lipids, proteins, and DNA and deregulate oncogenic signaling pathways that are involved in colorectal cancer (CRC) carcinogenesis. Although antioxidant compounds have been successfully used in the treatment of CRC as prevention approaches, they have also been shown in some cases to promote disease progression. In this review, we focus on the role of ROS in gastrointestinal homeostasis, CRC progression, diagnosis, and therapy with particular emphasis on ROS-stimulated pathways.
Collapse
Affiliation(s)
- Reyhaneh Moradi-Marjaneh
- Torbat Heydarieh University of Medical Sciences, Torbat Heydarieh, Iran.,Department of Physiology and Neurogenic inflammation research center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehraneh Mehramiz
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, UK
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Physiology and Neurogenic inflammation research center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Qian J, Tikk K, Werner S, Balavarca Y, Saadati M, Hechtner M, Brenner H. Biomarker discovery study of inflammatory proteins for colorectal cancer early detection demonstrated importance of screening setting validation. J Clin Epidemiol 2018; 104:24-34. [PMID: 30076979 DOI: 10.1016/j.jclinepi.2018.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/05/2018] [Accepted: 07/30/2018] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Most studies identifying inflammatory markers for early detection of colorectal cancer (CRC) were conducted using clinically manifest cases. We aimed to identify circulating inflammatory biomarkers for early detection of CRC and validate them in both a clinical setting and a true screening setting. STUDY DESIGN AND SETTING A total of 92 inflammatory proteins were quantified in baseline plasma samples from individuals clinically diagnosed with CRC and neoplasm-free controls matched on age and sex (training set). A multimarker panel was selected and evaluated in samples from another clinical setting (validation set C) and a screening setting (validation set S). RESULTS In the training set (N = 330), a five-biomarker signature was selected that provided an area under curve (AUC) of 0.85 and 60.9% sensitivity to detect CRC at 90% specificity. When this algorithm was applied to validation set C (N = 318), the AUC (0.80) and sensitivity (49.5%) at 90% specificity for CRC diagnosis were only slightly lower than those in the training set. By contrast, the diagnostic performance of the algorithm in validation set S (N = 126) from a true screening setting was much poorer, with an AUC of 0.59 and a sensitivity of 28.6% at 90% specificity. CONCLUSIONS An inflammation-related protein panel with apparently good diagnostic properties for CRC detection was identified and confirmed in an independent clinical validation set. However, the biomarker combination performed substantially worse in a validation sample from a true screening setting. Our results underline the importance of validation in screening settings subsequently to novel signature discovery for cancer early detection.
Collapse
Affiliation(s)
- Jing Qian
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Kaja Tikk
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Simone Werner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yesilda Balavarca
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Maral Saadati
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marlene Hechtner
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.
| |
Collapse
|
18
|
Rasool M, Malik A, Ghuman AA, Ashraf MAB, Arooj M, Waquar S, Zahid S, Shaheen S, Qazi A, Naseer MI, Zamzami MA, Al-Ghafari A, Baothman OA, Zeyadi M, Helmi N, Choudhry H, Jamal MS, Al-Qahtani MH. Implications of Isoprostanes and Matrix Metalloproteinase-7 Having Potential Role in the Development of Colorectal Cancer in Males. Front Oncol 2018; 8:205. [PMID: 29930913 PMCID: PMC5999746 DOI: 10.3389/fonc.2018.00205] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the third most common type of cancer and leading cause of death worldwide. Major risk factors involved in the development of CRC are increased dietary sources, genetics, and increasing age. Purpose of the study was to find the role of different variables in the progression of CRC. METHODOLOGY 50 blood samples from CRC patients and 20 samples from control were collected. Serum was separated from the blood by centrifugation. This serum was assessed for several antioxidants like superoxide dismutase (SOD), glutathione, glutathione peroxidase, glutathione reductase, catalase, vitamin A, C, and E, and pro-oxidants such as malondialdehyde, advanced oxidation protein products (AOPPs), and AGEs according to their respective protocols. Matrix metalloproteinase-7 (MMP-7) and isoprostanes were assessed by ELISA kits. RESULTS Lower levels of GSH (4.86 ± 0.78 vs 9.65 ± 1.13 μg/dl), SOD (0.08 ± 0.012 vs 0.46 ± 0.017 μg/dl), CAT (2.45 ± 0.03 vs 4.22 ± 0.19 μmol/mol of protein), and GRx (5.16 ± 0.06 vs 7.23 ± 0.36 μmol/ml) in the diseased group were recorded as compared with control. Higher levels of GPx (6.64 ± 0.19 mmol/dl) were observed in the subjects in comparison with control group (1.58 ± 0.30 mmol/dl). Highly significant decreased levels of vitamin A (0.81 ± 0.07 vs 2.37 ± 0.15 mg/ml), vitamin E (15.42 ± 1.26 vs 25.96 ± 2.19 mg/ml), and vitamin C (47.67 ± 7.69 vs 80.37 ± 10.21 mg/ml) were observed in the patients in contrast to control group. The reversal of antioxidants in later stages of CRC may be due to compensatory mechanisms in cancerous cells. The levels of MDA (nmol/ml) were also assessed, which shows significantly increased level in CRC patients as compared with control groups (3.67 ± 0.19 vs 1.31 ± 0.27). The levels of protein oxidation products [AGEs (2.74 ± 0.16 vs 0.84 ± 0.05 IU) and AOPPs (1.32 ± 0.02 vs 0.82 ± 0.07 ng/ml)] were significantly increased in subjects as compared with control. The levels of MMP-7 (64.75 ± 3.03 vs 50.61 ± 4.09 ng/ml) and isoprostanes (0.71 ± 0.03 vs 0.16 ± 0.02 ng/ml) were also analyzed. This shows that the levels of isoprostanes increased due to high lipid peroxidation mediate higher levels of MMP-7, which promotes development of CRC. CONCLUSION Following study suggested that elevated oxidative and inflammatory status along with lipid peroxidation and matrix metalloproteinases are the chief contributors in the progression of CRC.
Collapse
Affiliation(s)
- Mahmood Rasool
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Arif Malik
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | | | | | - Mahwish Arooj
- University College of Medicine and Dentistry, The University of Lahore, Lahore, Pakistan
| | - Sulayman Waquar
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sara Zahid
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Sumera Shaheen
- Centre for Research in Molecular Medicine, The University of Lahore, Lahore, Pakistan
| | - Aamer Qazi
- Centre for Research in Molecular Medicine, The University of Lahore, Lahore, Pakistan
| | - Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mazin A. Zamzami
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat Al-Ghafari
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Othman A. Baothman
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mustafa Zeyadi
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nawal Helmi
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism and Epigenetic Unit, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Innovation in Personalized Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | |
Collapse
|
19
|
Thyagarajan B, Guan W, Fedirko V, Barcelo H, Ramasubramaian R, Gross M, Goodman M, Bostick RM. Associations of mitochondrial polymorphisms with sporadic colorectal adenoma. Mol Carcinog 2018; 57:598-605. [PMID: 29323753 DOI: 10.1002/mc.22783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/09/2018] [Indexed: 11/12/2022]
Abstract
Somatic mutations in mitochondrial DNA have been reported in colorectal adenomatous polyps (adenomas), the precursors to most colorectal cancers. However, there are no reports of associations of germline variation in mitochondrial DNA with adenoma risk. We investigated associations of germline polymorphisms in the displacement loop (D-loop) and non-D-loop region of the mitochondrial genome with incident, sporadic colorectal adenoma in three pooled colonoscopy-based case-control studies (n = 327 adenoma cases, 420 controls) that used identical methods for case and risk factor ascertainment. We sequenced a 1124 bp fragment to identify all genetic variation in the mitochondrial D-loop region, and used the Sequenom platform to genotype 64 tagSNPs in the non-D-loop region. We used multivariable unconditional logistic regression to estimate associations of the polymorphisms with adenoma. The odds ratios (OR) for associations of four polymorphisms in the HV1 region (mt16294, mt16296, mt16278, mt16069) with adenoma were 2.30, 2.63, 3.34, and 0.56, respectively; all 95% confidence intervals (CI) excluded 1.0, however, after correction for multiple comparisons, none of the findings remained statistically significant. Similar results were found for six polymorphisms in the non-D-loop region. In the HV1 region poly C tract, relative to those with 5 repeats, the ORs for those with fewer or more repeats were, respectively, 2.29 (95%CI 1.07-4.89) and 0.63 (95%CI 0.36-1.08), but repeat numbers in the HV2 region were not associated with adenoma. These findings suggest that mitochondrial D-loop HV1 region polymorphisms may be associated with colorectal adenoma risk and support further investigation.
Collapse
Affiliation(s)
- Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Veronika Fedirko
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Helene Barcelo
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Ramya Ramasubramaian
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, Minnesota
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Michael Goodman
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, Georgia
| | - Roberd M Bostick
- Department of Epidemiology, Rollins School of Public Health, Winship Cancer Institute, Emory University, Atlanta, Georgia
| |
Collapse
|
20
|
Zhang Y, Wu H, Yang F, Ning J, Li M, Zhao C, Zhong S, Gu K, Wang H. Prognostic Value of the Expression of DNA Repair-Related Biomarkers Mediated by Alcohol in Gastric Cancer Patients. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:367-377. [PMID: 29331492 DOI: 10.1016/j.ajpath.2017.10.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/04/2017] [Accepted: 10/10/2017] [Indexed: 02/07/2023]
Abstract
Alcohol consumption likely induces gastric carcinogenesis through deregulation of RNA polymerase (Pol) III genes and oxidative damage. Transcription factor IIB-related factor 1 (BRF1) overexpression alleviates RNA Pol III transcription inhibition through breast cancer susceptibility gene 1 (BRCA1). Myeloperoxidase (MPO) involvement in cancer is induced by alcohol-mediated oxidative damage. BRCA1/2 and MPO play key roles in DNA repair. BRCA1 and BRCA2 exert different roles in homologous recombination repair. By using human gastric cancer (GC) biopsies, we investigated the prognostic value of these proteins upon alcohol induction. In total, high expression of BRF1 (P = 0.010) and positive cell infiltration of MPO (P = 0.004) in tumor tissues as well as positive expression of BRCA1 (P < 0.001) in para-tumor tissues were more frequent in GC patients with hazardous or harmful alcohol consumption habits. BRF1 (P = 0.021), BRCA2 (P < 0.001), and MPO (P = 0.039) were independent prognostic factors for disease-free survival. BRCA1 (P = 0.005) and BRCA2 (P < 0.001) also were identified as independent prognostic factors for overall survival. Furthermore, BRCA2 was an independent unfavorable prognostic factor for disease-free survival and overall survival (P < 0.001) in GC patients who underwent platinum-based adjuvant chemotherapy. BRF1, BRCA1/2, and MPO are DNA repair-related biomarkers, induced by alcohol with prognostic value in GC patients.
Collapse
Affiliation(s)
- Yiyin Zhang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hongyang Wu
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Feng Yang
- Department of Pathology, Basic Medical School of Anhui Medical University, Hefei, China
| | - Jie Ning
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Li
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chenchen Zhao
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shuping Zhong
- Department of Biochemistry and Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kangsheng Gu
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
21
|
González-Chavarría I, Fernandez E, Gutierrez N, González-Horta EE, Sandoval F, Cifuentes P, Castillo C, Cerro R, Sanchez O, Toledo JR. LOX-1 activation by oxLDL triggers an epithelial mesenchymal transition and promotes tumorigenic potential in prostate cancer cells. Cancer Lett 2017; 414:34-43. [PMID: 29107109 DOI: 10.1016/j.canlet.2017.10.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/20/2017] [Accepted: 10/23/2017] [Indexed: 02/02/2023]
Abstract
Obesity is related to an increased risk of developing prostate cancer with high malignancy stages or metastasis. Recent results demonstrated that LOX-1, a receptor associated with obesity and atherosclerosis, is overexpressed in advanced and metastatic prostate cancer. Furthermore, high levels of oxLDL, the main ligand for LOX-1, have been found in patients with advanced prostate cancer. However, the role of LOX-1 in prostate cancer has not been unraveled completely yet. Here, we show that LOX-1 is overexpressed in prostate cancer cells and its activation by oxLDL promotes an epithelial to mesenchymal transition, through of lowered expression of epithelial markers (E-cadherin and plakoglobin) and an increased expression of mesenchymal markers (vimentin, N-cadherin, snail, slug, MMP-2 and MMP-9). Consequently, LOX-1 activation by oxLDL promotes actin cytoskeleton restructuration and MMP-2 and MMP-9 activity inducing prostate cancer cell invasion and migration. Additionally, LOX-1 increased the tumorigenic potential of prostate cancer cells and its expression was necessary for tumor growth in nude mice. In conclusion, our results suggest that oxLDL/LOX-1 could be ones of mechanisms that explain why obese patients with prostate cancer have an accelerated tumor progression and a greater probability of developing metastasis.
Collapse
Affiliation(s)
- I González-Chavarría
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Science, Universidad de Concepión, Concepción, Chile
| | - E Fernandez
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Science, Universidad de Concepión, Concepción, Chile
| | - N Gutierrez
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Science, Universidad de Concepión, Concepción, Chile
| | - E E González-Horta
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Science, Universidad de Concepión, Concepción, Chile
| | - F Sandoval
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Science, Universidad de Concepión, Concepción, Chile
| | - P Cifuentes
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Science, Universidad de Concepión, Concepción, Chile
| | - C Castillo
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Science, Universidad de Concepión, Concepción, Chile
| | - R Cerro
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Science, Universidad de Concepión, Concepción, Chile
| | - O Sanchez
- Department of Pharmacology, School of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Jorge R Toledo
- Biotechnology and Biopharmaceuticals Laboratory, Department of Pathophysiology, School of Biological Science, Universidad de Concepión, Concepción, Chile.
| |
Collapse
|
22
|
Liu H, Liu X, Zhang C, Zhu H, Xu Q, Bu Y, Lei Y. Redox Imbalance in the Development of Colorectal Cancer. J Cancer 2017; 8:1586-1597. [PMID: 28775778 PMCID: PMC5535714 DOI: 10.7150/jca.18735] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/27/2017] [Indexed: 01/10/2023] Open
Abstract
Redox imbalance is resulted from the destruction of balance between oxidants and antioxidants. The dominant oxidants are reactive oxygen species (ROS), which are involved in multiple cellular processes by physiologically transporting signal as a second messenger or pathologically oxidizing DNA, lipids, and proteins. Generally speaking, low concentration of ROS is indispensable for cell survival and proliferation. However, high concentration of ROS is cytotoxic. Additionally, ROS are now known to induce the oxidative modification of macromolecules especially proteins. The redox modification of proteins is involved in numerous biological processes related to diseases including CRC. Herein, we attempt to afford an overview that highlights the crosstalk between redox imbalance and CRC.
Collapse
Affiliation(s)
- Hao Liu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xin Liu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Huifang Zhu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Qian Xu
- Department of Anesthesiology, North Sichuan Medical College, Nanchong, Sichuan 637000, China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yunlong Lei
- Department of Biochemistry and Molecular Biology, and Molecular Medicine and Cancer Research Center, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
23
|
The Janus-Faced Role of Antioxidants in Cancer Cachexia: New Insights on the Established Concepts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:9579868. [PMID: 27642498 PMCID: PMC5013212 DOI: 10.1155/2016/9579868] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/28/2016] [Accepted: 07/17/2016] [Indexed: 12/14/2022]
Abstract
Chronic inflammation and excessive loss of skeletal muscle usually occur during cancer cachexia, leading to functional impairment and delaying the cure of cancer. The release of cytokines by tumor promotes the formation of reactive oxygen species (ROS), which in turn regulate catabolic pathways involved in muscle atrophy. ROS also exert a dual role within tumor itself, as they can either promote proliferation and vascularization or induce senescence and apoptosis. Accordingly, previous studies that used antioxidants to modulate these ROS-dependent mechanisms, in cancer and cancer cachexia, have obtained contradictory results, hence the need to gather the main findings of these studies and draw global conclusions in order to stimulate more oriented research in this field. Based on the literature reviewed in this paper, it appears that antioxidant supplementation is (1) beneficial in cancer cachectic patients with antioxidant deficiencies, (2) most likely harmful in cancer patients with adequate antioxidant status (i.e., lung, gastrointestinal, head and neck, and esophageal), and (3) not recommended when undergoing radiotherapy. At the moment, measuring the blood levels of antioxidants may help to identify patients with systemic deficiencies. This approach is simple to realize but could not be a gold standard method for cachexia, as it does not necessarily reflect the redox state in other organs, like muscle.
Collapse
|
24
|
Genome-Wide Transcriptional Analysis Reveals the Protection against Hypoxia-Induced Oxidative Injury in the Intestine of Tibetans via the Inhibition of GRB2/EGFR/PTPN11 Pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6967396. [PMID: 27594973 PMCID: PMC4993941 DOI: 10.1155/2016/6967396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2016] [Revised: 06/15/2016] [Accepted: 06/28/2016] [Indexed: 01/19/2023]
Abstract
The molecular mechanisms for hypoxic environment causing the injury of intestinal mucosal barrier (IMB) are widely unknown. To address the issue, Han Chinese from 100 m altitude and Tibetans from high altitude (more than 3650 m) were recruited. Histological and transcriptome analyses were performed. The results showed intestinal villi were reduced and appeared irregular, and glandular epithelium was destroyed in the IMB of Tibetans when compared with Han Chinese. Transcriptome analysis revealed 2573 genes with altered expression. The levels of 1137 genes increased and 1436 genes decreased in Tibetans when compared with Han Chinese. Gene ontology (GO) analysis indicated most immunological responses were reduced in the IMB of Tibetans when compared with Han Chinese. Gene microarray showed that there were 25-, 22-, and 18-fold downregulation for growth factor receptor-bound protein 2 (GRB2), epidermal growth factor receptor (EGFR), and tyrosine-protein phosphatase nonreceptor type 11 (PTPN11) in the IMB of Tibetans when compared with Han Chinese. The downregulation of EGFR, GRB2, and PTPN11 will reduce the production of reactive oxygen species and protect against oxidative stress-induced injury for intestine. Thus, the transcriptome analysis showed the protecting functions of IMB patients against hypoxia-induced oxidative injury in the intestine of Tibetans via affecting GRB2/EGFR/PTPN11 pathways.
Collapse
|