1
|
Stone M, Lilley CM, Tang G, Loghavi S, Mirza KM. Phenotypic clues that predict underlying cytogenetic/genetic abnormalities in myeloid malignancies: A contemporary review. Cytopathology 2023; 34:530-541. [PMID: 37522274 DOI: 10.1111/cyt.13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023]
Abstract
Precise subclassification of myeloid malignancies per the World Health Organization (WHO) classification system and the International Consensus Classification of Myeloid Neoplasms and Acute Leukaemias (ICC) requires investigation and documentation of the presence of cytogenetic and/or molecular genetic changes. These ancillary studies not only help in diagnosis, but also the prognosis of disease; however, they take time to be completed. In contrast, morphological evaluation of material from the blood and bone marrow specimens of cases where myeloid malignancies are suspected is usually completed quickly. Cytomorphological assessment may predict genetic changes and can be helpful in triaging acuity. This is especially true in haematological emergencies such as acute promyelocytic leukaemia (APL), where prompt APL-specific therapy can be life changing. Similarly, some morphological clues may help identify core binding factor leukaemias where a diagnosis of acute myeloid leukaemia (AML) could be rendered without reaching the 20% blast cutoff with immediate treatment-decision implications, or even a subset of cases of AML with FLT3 ITD/NPM1 mutation(s) which show characteristic features. Even though FISH/cytogenetics and/or PCR are still required for establishing the final diagnosis, evaluation for the presence of specific cytomorphological features that help predict genetic changes can be a useful tool to help guide early therapy.
Collapse
Affiliation(s)
- Michael Stone
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Cullen M Lilley
- Department of Pathology and Laboratory Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| | - Guilin Tang
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, Houston, Texas, USA
| | - Kamran M Mirza
- Department of Pathology and Laboratory Medicine, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
2
|
Bansal R, Nayak BB, Bhardwaj S, Vanajakshi CN, Das P, Somayaji NS, Sharma S. Cancer stem cells and field cancerization of head and neck cancer - An update. J Family Med Prim Care 2020; 9:3178-3182. [PMID: 33102266 PMCID: PMC7567290 DOI: 10.4103/jfmpc.jfmpc_443_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/25/2020] [Accepted: 05/25/2020] [Indexed: 12/01/2022] Open
Abstract
Oral cancer results due to multiple genetic alterations that transform the normal cells in the oral cavity into neoplastic cells. These genetic changes in a particular tumor field lead to a rapid expansion of preneoplastic daughter cells producing malignant phenotype but the malignancy results due to such genetic changes occurr over several years. The morphological changes in these transformed cells help in the diagnosis of malignancy. Thus, the early changes at the gene level are present in the population of daughter cells in the organ, which explains the concept of field cancerization. Cancer stem cells (CSCs) represent a group of cells that have the capacity of self-renewal and have the potential to differentiate into other types of tumor cells. This review explains the cellular and genetic basis of field cancerization and the role of cancer stem cells in field cancerization.
Collapse
Affiliation(s)
- Richa Bansal
- Reader, Department of Oral Pathology and Microbiology, Seema Dental College and Hospital, Rishikesh, Uttrakhand, India
| | - Bikash Bishwadarshee Nayak
- Senior Lecturer, Department of Oral Medicine and Radiology, Hi Tech Dental College and Hospital, Bhubaneswar, India
| | | | - C N Vanajakshi
- Reader, Sree Sai Dental College and Research Institution, Chapuram, Srikakulm District, Andhra Pradesh, India
| | - Pragyan Das
- Senior Lecturer, Department of Oral Medicine and Radiology, Awadh Dental College and Hospital, Jamshedpur, Jharkhand, India
| | - Nagaveni S Somayaji
- Reader, Department of Prosthodontics, Crown and Bridge, Hi-Tech Dental College and Hospital, Bhubaneswar, India
| | - Sonika Sharma
- Private Practitioner and Consultant Oral Pathologist, New Delhi, India
| |
Collapse
|
3
|
Salem A, Loghavi S, Tang G, Huh YO, Jabbour EJ, Kantarjian H, Wang W, Hu S, Luthra R, Medeiros LJ, Khoury JD. Myeloid neoplasms with concurrent BCR-ABL1 and CBFB rearrangements: A series of 10 cases of a clinically aggressive neoplasm. Am J Hematol 2017; 92:520-528. [PMID: 28253536 DOI: 10.1002/ajh.24710] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 02/27/2017] [Indexed: 12/22/2022]
Abstract
Chronic myeloid leukemia (CML) is defined by the presence of t(9;22)(q34;q11.2)/BCR-ABL1. Additional chromosomal abnormalities confer an adverse prognosis and are particularly common in the blast phase of CML (CML-BP). CBFB rearrangement, particularly CBFB-MYH11 fusion resulting from inv(16)(p13.1q22) or t(16;16)(p13.1;q22), is an acute myeloid leukemia (AML)-defining alteration that is associated with a favorable outcome. The co-occurrence of BCR-ABL1 and CBFB rearrangement is extremely rare, and the significance of this finding remains unclear. We identified 10 patients with myeloid neoplasms harboring BCR-ABL1 and CBFB rearrangement. The study group included six men and four women with a median age of 51 years (range, 20-71 years). The sequence of molecular alterations could be determined in nine cases: BCR-ABL1 preceded CBFB rearrangement in seven, CBFB rearrangement preceded BCR-ABL1 in one, and both alterations were discovered simultaneously in one patient. BCR-ABL1 encoded for p210 kD in all cases in which BCR-ABL1 preceded CBFB rearrangement; a p190 kD was identified in the other three cases. Two patients were treated with the FLAG-IDA regimen (fludarabine, cytarabine, idarubicin, and G-CSF) and tyrosine kinase inhibitors (TKI); seven with other cytarabine-based regimens and TKIs, and one with ponatinib alone. At last follow up (median, 16 months; range 2-85), 7 of 10 patients had died. The co-existence of BCR-ABL1 and CBFB rearrangement is associated with poor outcome and a clinical course similar to that of CML-BP, and unlike de novo AML with CBFB rearrangement, suggesting that high-intensity chemotherapy with TKI should be considered in these patients.
Collapse
Affiliation(s)
- Alireza Salem
- Department of Hematopathology; The University of Texas, MD Anderson Cancer Center; Houston Texas USA
| | - Sanam Loghavi
- Department of Hematopathology; The University of Texas, MD Anderson Cancer Center; Houston Texas USA
| | - Guilin Tang
- Department of Hematopathology; The University of Texas, MD Anderson Cancer Center; Houston Texas USA
| | - Yang O. Huh
- Department of Hematopathology; The University of Texas, MD Anderson Cancer Center; Houston Texas USA
| | - Elias J. Jabbour
- Department of Leukemia; The University of Texas, MD Anderson Cancer Center; Houston Texas USA
| | - Hagop Kantarjian
- Department of Leukemia; The University of Texas, MD Anderson Cancer Center; Houston Texas USA
| | - Wei Wang
- Department of Hematopathology; The University of Texas, MD Anderson Cancer Center; Houston Texas USA
| | - Shimin Hu
- Department of Hematopathology; The University of Texas, MD Anderson Cancer Center; Houston Texas USA
| | - Rajyalakshmi Luthra
- Department of Hematopathology; The University of Texas, MD Anderson Cancer Center; Houston Texas USA
| | - L. Jeffrey Medeiros
- Department of Hematopathology; The University of Texas, MD Anderson Cancer Center; Houston Texas USA
| | - Joseph D. Khoury
- Department of Hematopathology; The University of Texas, MD Anderson Cancer Center; Houston Texas USA
| |
Collapse
|
4
|
Abramowitz J, Neuman T, Perlman R, Ben-Yehuda D. Gene and protein analysis reveals that p53 pathway is functionally inactivated in cytogenetically normal Acute Myeloid Leukemia and Acute Promyelocytic Leukemia. BMC Med Genomics 2017; 10:18. [PMID: 28340577 PMCID: PMC5423421 DOI: 10.1186/s12920-017-0249-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Background Mechanisms that inactivate the p53 pathway in Acute Myeloid Leukemia (AML), other than rare mutations, are still not well understood. Methods We performed a bioinformatics study of the p53 pathway function at the gene expression level on our collection of 1153 p53-pathway related genes. Publically available Affymetrix data of 607 de-novo AML patients at diagnosis were analyzed according to the patients cytogenetic, FAB and molecular mutations subtypes. We further investigated the functional status of the p53 pathway in cytogenetically normal AML (CN-AML) and Acute Promyelocytic Leukemia (APL) patients using bioinformatics, Real-Time PCR and immunohistochemistry. Results We revealed significant and differential alterations of p53 pathway-related gene expression in most of the AML subtypes. We found that p53 pathway-related gene expression was not correlated with the accepted grouping of AML subtypes such as by cytogenetically-based prognosis, morphological stage or by the type of molecular mutation. Our bioinformatic analysis revealed that p53 is not functional in CN-AML and APL blasts at inducing its most important functional outcomes: cell cycle arrest, apoptosis, DNA repair and oxidative stress defense. We revealed transcriptional downregulation of important p53 acetyltransferases in both CN-AML and APL, accompanied by increased Mdmx protein expression and inadequate Chk2 protein activation. Conclusions Our bioinformatic analysis demonstrated that p53 pathway is differentially inactivated in different AML subtypes. Focused gene and protein analysis of p53 pathway in CN-AML and APL patients imply that functional inactivation of p53 protein can be attributed to its impaired acetylation. Our analysis indicates the need in further accurate evaluation of p53 pathway functioning and regulation in distinct subtypes of AML. Electronic supplementary material The online version of this article (doi:10.1186/s12920-017-0249-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julia Abramowitz
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel.
| | - Tzahi Neuman
- Department of Pathology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Riki Perlman
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| | - Dina Ben-Yehuda
- Department of Hematology, Hadassah-Hebrew University Medical Center, P.O. Box 12000, Jerusalem, 91120, Israel
| |
Collapse
|
5
|
Sabharwal R, Mahendra A, Moon NJ, Gupta P, Jain A, Gupta S. Genetically altered fields in head and neck cancer and second field tumor. South Asian J Cancer 2014; 3:151-3. [PMID: 25136520 PMCID: PMC4134604 DOI: 10.4103/2278-330x.136766] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The concept of field cancerization has been ever changing since its first description by Slaughter et al in 1953. Field cancerization explains the mechanisms by which second primary tumors (SPTs) develop. SPTs are the tumors, which develop in the oral cavity in succession to the primary malignant tumors, which might vary in duration ranging from few months to years. Conceivably, a population of daughter cells with early genetic changes (without histopathology) remains in the organ, demonstrating the concept of field cancerization. This review explains the concept of field cancerization and various field theories along with molecular basis of field formation.
Collapse
Affiliation(s)
- Robin Sabharwal
- Department of Oral and Maxillofacial Pathology, Bhojia Dental College and Hospital, Baddi, Himachal Pradesh, India
| | - Ashish Mahendra
- Department of Oral Pathology, Chandra Dental College Barabanki, India
| | - Ninad J Moon
- Department of Periodontology, RKDF Dental College, Bhopal, India
| | - Parul Gupta
- Department of Orthodontics, Kalka Dental College, UP, India
| | - Ashish Jain
- Department of Conservative Dentistry, Krishna Dental College, UP, India
| | - Shivangi Gupta
- Department of Periodontology, Divya Jyoti College of Dental Sciences and Research, Ajit Mahal, Modinagar, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
6
|
Jones D, Yao H, Romans A, Dando C, Pierce S, Borthakur G, Hamilton A, Bueso-Ramos C, Ravandi F, Garcia-Manero G, Kantarjian H. Modeling interactions between leukemia-specific chromosomal changes, somatic mutations, and gene expression patterns during progression of core-binding factor leukemias. Genes Chromosomes Cancer 2010; 49:182-91. [PMID: 19908318 DOI: 10.1002/gcc.20732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In cancer genomes, changes observed during tumor progression can be difficult to separate from nonspecific accumulation of cytogenetic changes due to cancer-associated genetic instability. We studied genetic changes occurring over time in cancers presenting with a relatively simple karyotype, namely two related core-binding factor (CBF) acute myeloid leukemias (AMLs), to assess how specific chromosomal changes are selected based on tumor subtype and acquired somatic mutations. Expression profiles for DNA replication/repair genes and the mutation status of KRAS, NRAS, FLT3, and KIT were compared with the karyotypic changes at diagnosis and relapse(s) in 94 cases of inv(16)(p13.1q22)-AML and 82 cases of t(8;21)(q22;q22)-AML. The majority of both AML types demonstrated a simple aneuploid pattern of cytogenetic progression, with highly distinctive patterns of chromosome copy number changes, such as +22 and +13 exclusively in inv(16)-AML and -Y and -X in t(8;21)-AML. Selection of certain cytogenetic changes correlated with particular somatic mutations, such as +8 with RAS mutation, and absence of kinase pathway mutations in t(8;21)-AML with localized deletions at chromosome band 9q22. Alterations in transcript levels of mitotic spindle kinases such as CHEK1, AURKA, and AURKB were associated with the aneuploid progression pattern, particularly in t(8;21) cases. Despite the similarity in the initiating genetics of the two CBF AML types, highly tumor-specific patterns of limited aneuploidy are noted that persist and continue to accumulate at relapse. Thus, activation of genetic instability, possibly through mitotic spindle dysregulation, leads rapidly to the selection of advantageous single chromosome aneuploidy.
Collapse
Affiliation(s)
- Dan Jones
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Analysis of Aurora kinase A expression in CD34(+) blast cells isolated from patients with myelodysplastic syndromes and acute myeloid leukemia. J Hematop 2008; 2:2-8. [PMID: 19669217 PMCID: PMC2713495 DOI: 10.1007/s12308-008-0019-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Accepted: 08/30/2008] [Indexed: 01/20/2023] Open
Abstract
Aurora kinase A, also known as aurora A, is a serine/threonine kinase that plays critical roles in mitosis entry, chromosome alignment, segregation, and cytokinesis. Overexpression of aurora A has been observed in many solid tumors and some hematopoietic neoplasms, but little is known about its expression in myeloid diseases. Because cytogenetic abnormalities play an essential role in the pathogenesis of myeloid malignancies, we hypothesized that aurora A deregulation may be involved in myelodysplastic syndromes and acute myeloid leukemia and contribute to the chromosomal instability observed in these diseases. We assessed aurora A mRNA levels in CD34+ bone marrow blasts from nine patients with acute myeloid leukemia, 20 patients with myelodysplastic syndromes, and five normal patients serving as controls. CD34+ blasts were isolated from bone marrow aspirate specimens using magnetic activated cell separation technology. RNA was extracted from purified CD34+ cells, and quantitative real-time reverse transcriptase polymerase chain reaction for aurora A was performed. Immunocytochemical analyses for total aurora A, phosphorylated aurora A, Ki-67, and activated caspase 3 were performed on cytospin slides made from purified CD34+ cells in myelodysplastic syndrome patients using standard methods. Aurora A mRNA and protein levels were correlated, as was aurora A mRNA level, with blast counts, cytogenetic abnormalities, and International Prognostic Scoring System score. We found that CD34+ cells in myelodysplastic syndromes and acute myeloid leukemia expressed aurora A at significantly higher levels (P = 0.01 and P = 0.01, respectively) than normal CD34+ cells. Aurora A mRNA levels correlated with total and phosphorylated protein levels (P = 0.0002 and P = 0.02, respectively). No significant correlation was found between aurora A mRNA level and blast count, blast viability, cytogenetic abnormalities, or the International Prognostic Scoring System score in patients with myelodysplastic syndromes. We conclude that aurora A is up-regulated in CD34+ blasts from myeloid neoplasms.
Collapse
|