1
|
Viennet E, Frentiu FD, Williams CR, Mincham G, Jansen CC, Montgomery BL, Flower RLP, Faddy HM. Estimation of mosquito-borne and sexual transmission of Zika virus in Australia: Risks to blood transfusion safety. PLoS Negl Trop Dis 2020; 14:e0008438. [PMID: 32663213 PMCID: PMC7380650 DOI: 10.1371/journal.pntd.0008438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 07/24/2020] [Accepted: 06/01/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Since 2015, Zika virus (ZIKV) outbreaks have occurred in the Americas and the Pacific involving mosquito-borne and sexual transmission. ZIKV has also emerged as a risk to global blood transfusion safety. Aedes aegypti, a mosquito well established in north and some parts of central and southern Queensland, Australia, transmits ZIKV. Aedes albopictus, another potential ZIKV vector, is a threat to mainland Australia. Since these conditions create the potential for local transmission in Australia and a possible uncertainty in the effectiveness of blood donor risk-mitigation programs, we investigated the possible impact of mosquito-borne and sexual transmission of ZIKV in Australia on local blood transfusion safety. METHODOLOGY/PRINCIPAL FINDINGS We estimated 'best-' and 'worst-' case scenarios of monthly reproduction number (R0) for both transmission pathways of ZIKV from 1996-2015 in 11 urban or regional population centres, by varying epidemiological and entomological estimates. We then estimated the attack rate and subsequent number of infectious people to quantify the ZIKV transfusion-transmission risk using the European Up-Front Risk Assessment Tool. For all scenarios and with both vector species R0 was lower than one for ZIKV transmission. However, a higher risk of a sustained outbreak was estimated for Cairns, Rockhampton, Thursday Island, and theoretically in Darwin during the warmest months of the year. The yearly estimation of the risk of transmitting ZIKV infection by blood transfusion remained low through the study period for all locations, with the highest potential risk estimated in Darwin. CONCLUSIONS/SIGNIFICANCE Given the increasing demand for plasma products in Australia, the current strategy of restricting donors returning from infectious disease outbreak regions to source plasma collection provides a simple and effective risk management approach. However, if local transmission was suspected in the main urban centres of Australia, potentially facilitated by the geographic range expansion of Ae. aegypti or Ae. albopictus, this mitigation strategy would need urgent review.
Collapse
Affiliation(s)
- Elvina Viennet
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- * E-mail:
| | - Francesca D. Frentiu
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Craig R. Williams
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | - Gina Mincham
- Australian Centre for Precision Health, University of South Australia, Adelaide, South Australia, Australia
| | - Cassie C. Jansen
- Communicable Diseases Branch, Queensland Department of Health, Herston, Queensland, Australia
| | - Brian L. Montgomery
- Metro South Public Health Unit, Metro South Hospital and Health Service, Brisbane, Queensland, Australia
| | - Robert L. P. Flower
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| | - Helen M. Faddy
- Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia
- Institute for Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
- School of Health and Sport Sciences, University of the Sunshine Coast, Queensland, Australia
| |
Collapse
|
2
|
|
3
|
Gravemann U, Handke W, Müller TH, Seltsam A. Bacterial inactivation of platelet concentrates with the THERAFLEX UV-Platelets pathogen inactivation system. Transfusion 2018; 59:1324-1332. [PMID: 30588633 DOI: 10.1111/trf.15119] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND The THERAFLEX UV-Platelets system (Maco Pharma) uses ultraviolet C (UVC) light for pathogen inactivation (PI) of platelet concentrates (PCs) without any additional photoactive compound. The aim of the study was to systematically investigate bacterial inactivation with this system under conditions of intended use. STUDY DESIGN AND METHODS The robustness of the system was evaluated by assessing its capacity to inactivate high concentrations of different bacterial species in accordance with World Health Organization guidelines. The optimal use of the PI system was explored in time-to-treatment experiments by testing its ability to sterilize PCs contaminated with low levels of bacteria on the day of manufacture (target concentration, 100 colony-forming units/unit). The bacteria panel used for spiking experiments in this study included the World Health Organization International Repository Platelet Transfusion Relevant Reference Strains (n = 14), commercially available strains (n = 13), and in-house clinical isolates (n = 2). RESULTS Mean log reduction factors after UVC treatment ranged from 3.1 to 7.5 and varied between different strains of the same species. All PCs (n = 12/species) spiked with up to 200 colony-forming units/bag remained sterile until the end of storage when UVC treated 6 hours after spiking. UVC treatment 8 hours after spiking resulted in single breakthrough contaminations with the fast-growing species Escherichia coli and Streptococcus pyogenes. CONCLUSION The UVC-based THERAFLEX UV-Platelets system efficiently inactivates transfusion-relevant bacterial species in PCs. The comprehensive data from this study may provide a valuable basis for the optimal use of this UVC-based PI system.
Collapse
Affiliation(s)
- Ute Gravemann
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Wiebke Handke
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Thomas H Müller
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| | - Axel Seltsam
- German Red Cross Blood Service NSTOB, Institute Springe, Springe, Germany
| |
Collapse
|
4
|
Estcourt LJ, Malouf R, Hopewell S, Trivella M, Doree C, Stanworth SJ, Murphy MF. Pathogen-reduced platelets for the prevention of bleeding. Cochrane Database Syst Rev 2017; 7:CD009072. [PMID: 28756627 PMCID: PMC5558872 DOI: 10.1002/14651858.cd009072.pub3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Platelet transfusions are used to prevent and treat bleeding in people who are thrombocytopenic. Despite improvements in donor screening and laboratory testing, a small risk of viral, bacterial, or protozoal contamination of platelets remains. There is also an ongoing risk from newly emerging blood transfusion-transmitted infections for which laboratory tests may not be available at the time of initial outbreak.One solution to reduce the risk of blood transfusion-transmitted infections from platelet transfusion is photochemical pathogen reduction, in which pathogens are either inactivated or significantly depleted in number, thereby reducing the chance of transmission. This process might offer additional benefits, including platelet shelf-life extension, and negate the requirement for gamma-irradiation of platelets. Although current pathogen-reduction technologies have been proven to reduce pathogen load in platelet concentrates, a number of published clinical studies have raised concerns about the effectiveness of pathogen-reduced platelets for post-transfusion platelet count recovery and the prevention of bleeding when compared with standard platelets.This is an update of a Cochrane review first published in 2013. OBJECTIVES To assess the effectiveness of pathogen-reduced platelets for the prevention of bleeding in people of any age requiring platelet transfusions. SEARCH METHODS We searched for randomised controlled trials (RCTs) in the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library 2016, Issue 9), MEDLINE (from 1946), Embase (from 1974), CINAHL (from 1937), the Transfusion Evidence Library (from 1950), and ongoing trial databases to 24 October 2016. SELECTION CRITERIA We included RCTs comparing the transfusion of pathogen-reduced platelets with standard platelets, or comparing different types of pathogen-reduced platelets. DATA COLLECTION AND ANALYSIS We used the standard methodological procedures expected by Cochrane. MAIN RESULTS We identified five new trials in this update of the review. A total of 15 trials were eligible for inclusion in this review, 12 completed trials (2075 participants) and three ongoing trials. Ten of the 12 completed trials were included in the original review. We did not identify any RCTs comparing the transfusion of one type of pathogen-reduced platelets with another.Nine trials compared Intercept® pathogen-reduced platelets to standard platelets, two trials compared Mirasol® pathogen-reduced platelets to standard platelets; and one trial compared both pathogen-reduced platelets types to standard platelets. Three RCTs were randomised cross-over trials, and nine were parallel-group trials. Of the 2075 participants enrolled in the trials, 1981 participants received at least one platelet transfusion (1662 participants in Intercept® platelet trials and 319 in Mirasol® platelet trials).One trial included children requiring cardiac surgery (16 participants) or adults requiring a liver transplant (28 participants). All of the other participants were thrombocytopenic individuals who had a haematological or oncological diagnosis. Eight trials included only adults.Four of the included studies were at low risk of bias in every domain, while the remaining eight included studies had some threats to validity.Overall, the quality of the evidence was low to high across different outcomes according to GRADE methodology.We are very uncertain as to whether pathogen-reduced platelets increase the risk of any bleeding (World Health Organization (WHO) Grade 1 to 4) (5 trials, 1085 participants; fixed-effect risk ratio (RR) 1.09, 95% confidence interval (CI) 1.02 to 1.15; I2 = 59%, random-effect RR 1.14, 95% CI 0.93 to 1.38; I2 = 59%; low-quality evidence).There was no evidence of a difference between pathogen-reduced platelets and standard platelets in the incidence of clinically significant bleeding complications (WHO Grade 2 or higher) (5 trials, 1392 participants; RR 1.10, 95% CI 0.97 to 1.25; I2 = 0%; moderate-quality evidence), and there is probably no difference in the risk of developing severe bleeding (WHO Grade 3 or higher) (6 trials, 1495 participants; RR 1.24, 95% CI 0.76 to 2.02; I2 = 32%; moderate-quality evidence).There is probably no difference between pathogen-reduced platelets and standard platelets in the incidence of all-cause mortality at 4 to 12 weeks (6 trials, 1509 participants; RR 0.81, 95% CI 0.50 to 1.29; I2 = 26%; moderate-quality evidence).There is probably no difference between pathogen-reduced platelets and standard platelets in the incidence of serious adverse events (7 trials, 1340 participants; RR 1.09, 95% CI 0.88 to 1.35; I2 = 0%; moderate-quality evidence). However, no bacterial transfusion-transmitted infections occurred in the six trials that reported this outcome.Participants who received pathogen-reduced platelet transfusions had an increased risk of developing platelet refractoriness (7 trials, 1525 participants; RR 2.94, 95% CI 2.08 to 4.16; I2 = 0%; high-quality evidence), though the definition of platelet refractoriness differed between trials.Participants who received pathogen-reduced platelet transfusions required more platelet transfusions (6 trials, 1509 participants; mean difference (MD) 1.23, 95% CI 0.86 to 1.61; I2 = 27%; high-quality evidence), and there was probably a shorter time interval between transfusions (6 trials, 1489 participants; MD -0.42, 95% CI -0.53 to -0.32; I2 = 29%; moderate-quality evidence). Participants who received pathogen-reduced platelet transfusions had a lower 24-hour corrected-count increment (7 trials, 1681 participants; MD -3.02, 95% CI -3.57 to -2.48; I2 = 15%; high-quality evidence).None of the studies reported quality of life.We did not evaluate any economic outcomes.There was evidence of subgroup differences in multiple transfusion trials between the two pathogen-reduced platelet technologies assessed in this review (Intercept® and Mirasol®) for all-cause mortality and the interval between platelet transfusions (favouring Intercept®). AUTHORS' CONCLUSIONS Findings from this review were based on 12 trials, and of the 1981 participants who received a platelet transfusion only 44 did not have a haematological or oncological diagnosis.In people with haematological or oncological disorders who are thrombocytopenic due to their disease or its treatment, we found high-quality evidence that pathogen-reduced platelet transfusions increase the risk of platelet refractoriness and the platelet transfusion requirement. We found moderate-quality evidence that pathogen-reduced platelet transfusions do not affect all-cause mortality, the risk of clinically significant or severe bleeding, or the risk of a serious adverse event. There was insufficient evidence for people with other diagnoses.All three ongoing trials are in adults (planned recruitment 1375 participants) with a haematological or oncological diagnosis.
Collapse
Affiliation(s)
- Lise J Estcourt
- NHS Blood and TransplantHaematology/Transfusion MedicineLevel 2, John Radcliffe HospitalHeadingtonOxfordUKOX3 9BQ
| | - Reem Malouf
- University of OxfordNational Perinatal Epidemiology Unit (NPEU)Old Road CampusOxfordUKOX3 7LF
| | - Sally Hopewell
- University of OxfordOxford Clinical Trials Research UnitNuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesWindmill RoadOxfordUKOX3 7LD
| | - Marialena Trivella
- University of OxfordCentre for Statistics in MedicineBotnar Research CentreWindmill RoadOxfordUKOX3 7LD
| | - Carolyn Doree
- NHS Blood and TransplantSystematic Review InitiativeJohn Radcliffe HospitalOxfordUKOX3 9BQ
| | - Simon J Stanworth
- Oxford University Hospitals NHS Foundation Trust and University of OxfordNational Institute for Health Research (NIHR) Oxford Biomedical Research CentreJohn Radcliffe Hospital, Headley WayHeadingtonOxfordUKOX3 9BQ
| | - Michael F Murphy
- Oxford University Hospitals NHS Foundation Trust and University of OxfordNHS Blood and Transplant; National Institute for Health Research (NIHR) Oxford Biomedical Research CentreJohn Radcliffe HospitalHeadingtonOxfordUK
| |
Collapse
|
5
|
Abstract
A wide variety of clinical conditions, associated with low circulating platelet counts, require platelet transfusion in order to normalize hemostatic function. Although single-donor apheresis platelets bear the lowest risk of transfusion-transmitted infections, pathogen reduction technologies (PRT) are being implemented worldwide to reduce this risk further through inactivation of known, emergent and as yet to be discovered nucleic acid-based pathogens. Human blood platelets are now known to harbor a diverse transcriptome, important to their function and comprised of >5000 protein-coding messenger RNAs and different classes of non-coding RNAs, including microRNAs. Our appreciation of the nucleic acid-dependent functions of platelets is likely to increase. On the other hand, the side effects of PRT on platelet function are underappreciated. Recent evidences suggest that PRT may compromise platelets' responsiveness to agonists, and induce platelet activation. For instance, platelets have the propensity to release proinflammatory microparticles (MPs) upon activation, and the possibility that PRT may enhance the production of platelet MPs in platelet concentrates (PCs) appears likely. With this in mind, it would be timely and appropriate to investigate other means to inactivate pathogens more specifically, or to modify the currently available PRT so to better preserve the platelet function and improve the safety of PCs; platelets' perspective to PRT deserves to be considered.
Collapse
Affiliation(s)
- Abdimajid Osman
- a Department of Clinical Chemistry , Region Östergötland , Linköping , Sweden.,b Department of Clinical and Experimental Medicine , University of Linköping , Linköping , Sweden
| | - Walter E Hitzler
- c Transfusion Center, University Medical Center of the Johannes Gutenberg University Mainz , Hochhaus Augustusplatz , Mainz , Germany
| | - Patrick Provost
- d CHUQ Research Center/CHUL , 2705 Blvd Laurier, Quebec , QC , Canada.,e Faculty of Medicine , Université Laval , Quebec , QC , Canada
| |
Collapse
|
6
|
Hume HA, Ddungu H, Angom R, Baluku H, Kajumbula H, Kyeyune-Byabazaire D, Orem J, Ramirez-Arcos S, Tobian AA. Platelet transfusion therapy in sub-Saharan Africa: bacterial contamination, recipient characteristics, and acute transfusion reactions. Transfusion 2016; 56:1951-9. [PMID: 27079627 PMCID: PMC5518785 DOI: 10.1111/trf.13594] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/20/2016] [Accepted: 02/20/2016] [Indexed: 11/29/2022]
Abstract
BACKGROUND Little data are available on bacterial contamination (BC) of platelet units or acute transfusion reactions to platelet transfusions (PTs) in sub-Saharan Africa (SSA). STUDY DESIGN AND METHODS This prospective, observational study evaluated the rate of BC in whole blood-derived platelet units (WB-PUs), the utility of performing Gram stains to prevent septic reactions, characteristics of patients receiving PTs, and the rate of acute reactions associated with PTs at the Uganda Cancer Institute in Kampala, Uganda. An aliquot of each WB-PU studied was taken to perform Gram stains and culture using the Bactec 9120 instrument. Study participants were monitored for reactions. RESULTS In total, 337 WB-PUs were evaluated for BC, of which 323 units were transfused in 151 transfusion episodes to 50 patients. The frequency of BC ranged from 0.3% to 2.1% (according to criteria used to define BC). The Gram stain had high specificity (99.1%) but low sensitivity to detect units with BC. The median platelet count before PT was 10,900 cells/µL (interquartile range, 6000-18,900 cells/µL). Overall, 78% of PTs were given to patients with no bleeding. Acute reactions occurred in 11 transfusion episodes, involving 13 WB-PUs, for a rate of 7.3% (95% confidence interval, 3.7%-12.7%) per transfusion episode. All recipients of units with positive bacterial cultures were receiving antibiotics at the time of transfusion; none experienced a reaction. CONCLUSIONS The rate of BC observed in this study is lower than previously reported in SSA, but still remains a safety issue. Because Gram staining appears to be an ineffective screening tool, alternate methods should be explored to prevent transfusing bacterially contaminated platelets in sub-Saharan Africa.
Collapse
Affiliation(s)
- Heather A. Hume
- CHU Ste Justine, University of Montreal, Montreal, QC, Canada
| | | | | | | | - Henry Kajumbula
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | | | | | | |
Collapse
|
7
|
Cicchetti A, Berrino A, Casini M, Codella P, Facco G, Fiore A, Marano G, Marchetti M, Midolo E, Minacori R, Refolo P, Romano F, Ruggeri M, Sacchini D, Spagnolo AG, Urbina I, Vaglio S, Grazzini G, Liumbruno GM. Health Technology Assessment of pathogen reduction technologies applied to plasma for clinical use. BLOOD TRANSFUSION = TRASFUSIONE DEL SANGUE 2016; 14:287-386. [PMID: 27403740 PMCID: PMC4942318 DOI: 10.2450/2016.0065-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although existing clinical evidence shows that the transfusion of blood components is becoming increasingly safe, the risk of transmission of known and unknown pathogens, new pathogens or re-emerging pathogens still persists. Pathogen reduction technologies may offer a new approach to increase blood safety. The study is the output of collaboration between the Italian National Blood Centre and the Post-Graduate School of Health Economics and Management, Catholic University of the Sacred Heart, Rome, Italy. A large, multidisciplinary team was created and divided into six groups, each of which addressed one or more HTA domains.Plasma treated with amotosalen + UV light, riboflavin + UV light, methylene blue or a solvent/detergent process was compared to fresh-frozen plasma with regards to current use, technical features, effectiveness, safety, economic and organisational impact, and ethical, social and legal implications. The available evidence is not sufficient to state which of the techniques compared is superior in terms of efficacy, safety and cost-effectiveness. Evidence on efficacy is only available for the solvent/detergent method, which proved to be non-inferior to untreated fresh-frozen plasma in the treatment of a wide range of congenital and acquired bleeding disorders. With regards to safety, the solvent/detergent technique apparently has the most favourable risk-benefit profile. Further research is needed to provide a comprehensive overview of the cost-effectiveness profile of the different pathogen-reduction techniques. The wide heterogeneity of results and the lack of comparative evidence are reasons why more comparative studies need to be performed.
Collapse
Affiliation(s)
- Americo Cicchetti
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Alexandra Berrino
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Marina Casini
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Paola Codella
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppina Facco
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Alessandra Fiore
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Giuseppe Marano
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Marco Marchetti
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Emanuela Midolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Roberta Minacori
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Pietro Refolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Federica Romano
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Matteo Ruggeri
- Postgraduate School of Health Economics and Management (Altems), Catholic University of the Sacred Heart, Rome, Italy
| | - Dario Sacchini
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Antonio G. Spagnolo
- Institute of Bioethics, Catholic University of the Sacred Heart, Rome, Italy
| | - Irene Urbina
- Health Technology Assessment Unit of “Gemelli” Teaching Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Stefania Vaglio
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | - Giuliano Grazzini
- Italian National Blood Centre, National Institute of Health, Rome, Italy
| | | |
Collapse
|
8
|
van der Meer PF, Gravemann U, de Korte D, Sumian C, Tolksdorf F, Müller TH, Seltsam A. Effect of increased agitation speed on pathogen inactivation efficacy andin vitroquality in UVC-treated platelet concentrates. Vox Sang 2016; 111:127-34. [DOI: 10.1111/vox.12404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 12/17/2022]
Affiliation(s)
- P. F. van der Meer
- Department of Product and Process Development; Sanquin Blood Bank; Amsterdam The Netherlands
| | - U. Gravemann
- Red Cross Blood Service NSTOB; Institute Springe; Springe Germany
| | - D. de Korte
- Department of Product and Process Development; Sanquin Blood Bank; Amsterdam The Netherlands
- Department of Blood Cell Research; Sanquin Research; Amsterdam The Netherlands
| | | | | | - T. H. Müller
- Red Cross Blood Service NSTOB; Institute Springe; Springe Germany
| | - A. Seltsam
- Red Cross Blood Service NSTOB; Institute Springe; Springe Germany
| |
Collapse
|
9
|
Abdullah S, Karunamoorthi K. Malaria and blood transfusion: major issues of blood safety in malaria-endemic countries and strategies for mitigating the risk of Plasmodium parasites. Parasitol Res 2015; 115:35-47. [PMID: 26531301 DOI: 10.1007/s00436-015-4808-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 10/23/2015] [Indexed: 12/22/2022]
Abstract
Malaria inflicts humankind over centuries, and it remains as a major threat to both clinical medicine and public health worldwide. Though hemotherapy is a life-sustaining modality, it continues to be a possible source of disease transmission. Hence, hemovigilance is a matter of grave concern in the malaria-prone third-world countries. In order to pursue an effective research on hemovigilance, a comprehensive search has been conducted by using the premier academic-scientific databases, WHO documents, and English-language search engines. One hundred two appropriate articles were chosen for data extraction, with a particular reference to emerging pathogens transmitted through blood transfusion, specifically malaria. Blood donation screening is done through microscopic examination and immunological assays to improve the safety of blood products by detection major blood-borne pathogens, viz., HIV, HBV, HCV, syphilis, and malarial parasites. Transfusion therapy significantly dwindles the preventable morbidity and mortality attributed to various illnesses and diseases, particularly AIDS, tuberculosis, and malaria. Examination of thick and thin blood smears are performed to detect positivity and to identify the Plasmodium species, respectively. However, all of these existing diagnostic tools have their own limitations in terms of sensitivity, specificity, cost-effectiveness, and lack of resources and skilled personnel. Globally, despite the mandate need of screening blood and its components according to the blood-establishment protocols, it is seldom practiced in the low-income/poverty-stricken settings. In addition, each and every single phase of transfusion chain carries sizable inherent risks from donors to recipients. Interestingly, opportunities also lie ahead to enhance the safety of blood-supply chain and patients. It can be achieved through sustainable blood-management strategies like (1) appropriate usage of precise diagnostic tools/techniques, (2) promoting hemovigilance system, and (3) adopting novel processes of inactivation technology. Furthermore, selection of the zero-risk donors could pave the way to build a transmissible malaria-free world in the near future.
Collapse
Affiliation(s)
- Saleh Abdullah
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Kaliyaperumal Karunamoorthi
- Unit of Tropical Diseases, Department of Environmental Health, Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Kingdom of Saudi Arabia.
| |
Collapse
|
10
|
Balint B, Jovicic-Gojkov D, Todorovic-Balint M, Subota V, Pavlovic M, Goodrich R. Plasma constituent integrity in pre-storage vs. post-storage riboflavin and UV-light treatment--a comparative study. Transfus Apher Sci 2013; 49:434-9. [PMID: 23820430 DOI: 10.1016/j.transci.2013.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 05/16/2013] [Indexed: 01/15/2023]
Abstract
Treatment of fresh frozen plasma (FFP) by riboflavin (RB) and ultraviolet (UV) light inhibits nucleic acid replication, leading to inactivation of white blood cells (WBCs) and pathogens. The goal of this study was to compare the effects of pathogen reduction technology (PRT) treatment on the plasma protein content based on biochemical, immune and hemostatic characteristics in "typical" pre-storage vs. post-storage PRT-treatment setting. Following whole blood centrifugation, separated plasma units were: (a) inactivated and frozen (pre-storage setting or control group [CG]) or (b) immediately frozen (post-storage setting or study group [SG]) afterward thawed, inactivated and stored at -40 ± 5°C (cryostorage). Plasma units were inactivated by the Mirasol PRT system (TerumoBCT, USA). Using multi-laboratory techniques and equipments, biochemistry (Advia 1800; Siemens, Germany), IgM, IgG and IgA, complement components C3 and C4 (BNA II nefelometer analyzer; Siemens, Germany), as well as CH50 activity (Behring coagulation timer; Siemens, Germany) were investigated. Procoagulant and inhibitor factors, such as antithrombin-III (AT-III), and protein C (PC) were determined by BCS XP Coagulation system (Siemens, Germany). There were neither significant changes in final protein levels, nor any differences in plasma immunoglobulin levels investigated. In the final samples CH50 activity was reduced in both investigated groups. The plasma concentration of the complement C3 following post-storage treatment was significantly (p<0.05) higher than in pre-storage setting. There was a trend of depletion of procoagulant activities in both, pre-storage and post-storage PRT-treatment (initial vs. final values), but there were no significant differences between two groups. Results confirmed that AT-III was significantly higher after post-storage inactivation. In conclusion, this study confirmed that there were not clinically relevant intergroup (pre-storage vs. post-storage PRT-treatment) differences in plasma constituent levels. Post-storage treated FFP remains, protein quantity, and activity well, and therefore can be used in clinical practice. Previously cryostored or quarantine FFP units (despite the reduced quarantine period after NAT/PCR testing) could be safely and effectively inactivated, directly prior to clinical application.
Collapse
Affiliation(s)
- Bela Balint
- Institute for Medical Research, University of Belgrade, Serbia; Institute for Transfusiology and Hemobiology of MMA, Belgrade, Serbia; Faculty of Medicine of MMA, University of Defense, Serbia.
| | | | | | | | | | | |
Collapse
|
11
|
Seltsam A, Müller TH. Update on the use of pathogen-reduced human plasma and platelet concentrates. Br J Haematol 2013; 162:442-54. [PMID: 23710899 DOI: 10.1111/bjh.12403] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The use of pathogen reduction technologies (PRTs) for labile blood components is slowly but steadily increasing. While pathogen-reduced plasma is already used routinely, efficacy and safety concerns impede the widespread use of pathogen-reduced platelets. The supportive and often prophylactic nature of blood component therapy in a variety of clinical situations complicates the clinical evaluation of these novel blood products. However, an increasing body of evidence on the clinical efficacy, safety, cost-benefit ratio and development of novel technologies suggests that pathogen reduction has entered a stage of maturity that could further increase the safety margin in haemotherapy. This review summarizes the clinical evidence on PRTs for plasma and platelet products that are currently licensed or under development.
Collapse
Affiliation(s)
- Axel Seltsam
- Institute Springe, German Red Cross Blood Service NSTOB, Springe, Germany.
| | | |
Collapse
|
12
|
Chi X, Zhi L, Vostal JG. Human platelets pathogen reduced with riboflavin and ultraviolet light do not cause acute lung injury in a two-event SCID mouse model. Transfusion 2013; 54:74-85. [DOI: 10.1111/trf.12242] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/02/2013] [Indexed: 01/27/2023]
Affiliation(s)
- Xuan Chi
- Laboratory of Cellular Hematology; Division of Hematology; OBRR; Center for Biologics Evaluation and Research; Food and Drug Administration; Rockville Maryland
| | - Li Zhi
- Laboratory of Cellular Hematology; Division of Hematology; OBRR; Center for Biologics Evaluation and Research; Food and Drug Administration; Rockville Maryland
| | - Jaroslav G. Vostal
- Laboratory of Cellular Hematology; Division of Hematology; OBRR; Center for Biologics Evaluation and Research; Food and Drug Administration; Rockville Maryland
| |
Collapse
|
13
|
Butler C, Doree C, Estcourt LJ, Trivella M, Hopewell S, Brunskill SJ, Stanworth S, Murphy MF. Pathogen-reduced platelets for the prevention of bleeding. Cochrane Database Syst Rev 2013:CD009072. [PMID: 23543569 DOI: 10.1002/14651858.cd009072.pub2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Platelet transfusions are used to prevent and treat bleeding in patients who are thrombocytopenic. Despite improvements in donor screening and laboratory testing, a small risk of viral, bacterial or protozoal contamination of platelets remains. There is also an ongoing risk from newly emerging blood transfusion-transmitted infections (TTIs) for which laboratory tests may not be available at the time of initial outbreak.One solution to reduce further the risk of TTIs from platelet transfusion is photochemical pathogen reduction, a process by which pathogens are either inactivated or significantly depleted in number, thereby reducing the chance of transmission. This process might offer additional benefits, including platelet shelf-life extension, and negate the requirement for gamma-irradiation of platelets. Although current pathogen-reduction technologies have been proven significantly to reduce pathogen load in platelet concentrates, a number of published clinical studies have raised concerns about the effectiveness of pathogen-reduced platelets for post-transfusion platelet recovery and the prevention of bleeding when compared with standard platelets. OBJECTIVES To assess the effectiveness of pathogen-reduced platelets for the prevention of bleeding in patients requiring platelet transfusions. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL, The Cochrane Library 2013, Issue 1), MEDLINE (1950 to 18 February 2013), EMBASE (1980 to 18 February 2013), CINAHL (1982 to 18 February 2013) and the Transfusion Evidence Library (1980 to 18 February 2013). We also searched several international and ongoing trial databases and citation-tracked relevant reference lists. We requested information on possible unpublished trials from known investigators in the field. SELECTION CRITERIA We included randomised controlled trials (RCTs) comparing the transfusion of pathogen-reduced platelets with standard platelets. We did not identify any RCTs which compared the transfusion of one type of pathogen-reduced platelets with another. DATA COLLECTION AND ANALYSIS One author screened all references, excluding duplicates and those clearly irrelevant. Two authors then screened the remaining references, confirmed eligibility, extracted data and analysed trial quality independently. We requested and obtained a significant amount of missing data from trial authors. We performed meta-analyses where appropriate using the fixed-effect model for risk ratios (RR) or mean differences (MD), with 95% confidence intervals (95% CI), and used the I² statistic to explore heterogeneity, employing the random-effects model when I² was greater than 30%. MAIN RESULTS We included 10 trials comparing pathogen-reduced platelets with standard platelets. Nine trials assessed Intercept® pathogen-reduced platelets and one trial Mirasol® pathogen-reduced platelets. Two were randomised cross-over trials and the remaining eight were parallel-group RCTs. In total, 1422 participants were available for analysis across the 10 trials, of which 675 participants received Intercept® and 56 Mirasol® platelet transfusions. Four trials assessed the response to a single study platelet transfusion (all Intercept®) and six to multiple study transfusions (Intercept® (N = 5), Mirasol® (N = 1)) compared with standard platelets.We found the trials to be generally at low risk of bias but heterogeneous regarding the nature of the interventions (platelet preparation), protocols for platelet transfusion, definitions of outcomes, methods of outcome assessment and duration of follow-up.Our primary outcomes were mortality, 'any bleeding', 'clinically significant bleeding' and 'severe bleeding', and were grouped by duration of follow-up: short (up to 48 hours), medium (48 hours to seven days) or long (more than seven days). Meta-analysis of data from five trials of multiple platelet transfusions reporting 'any bleeding' over a long follow-up period found an increase in bleeding in those receiving pathogen-reduced platelets compared with standard platelets using the fixed-effect model (RR 1.09, 95% CI 1.02 to 1.15, I² = 59%); however, this meta-analysis showed no difference between treatment arms when using the random-effects model (RR 1.14, 95% CI 0.93 to 1.38).There was no evidence of a difference between treatment arms in the number of patients with 'clinically significant bleeding' (reported by four out of the same five trials) or 'severe bleeding' (reported by all five trials) (respectively, RR 1.06, 95% CI 0.93 to 1.21, I² = 2%; RR 1.27, 95% CI 0.76 to 2.12, I² = 51%). We also found no evidence of a difference between treatment arms for all-cause mortality, acute transfusion reactions, adverse events, serious adverse events and red cell transfusion requirements in the trials which reported on these outcomes. No bacterial transfusion-transmitted infections occurred in the six trials that reported this outcome.Although the definition of platelet refractoriness differed between trials, the relative risk of this event was 2.74 higher following pathogen-reduced platelet transfusion (RR 2.74, 95% CI 1.84 to 4.07, I² = 0%). Participants required 7% more platelet transfusions following pathogen-reduced platelet transfusion when compared with standard platelet transfusion (MD 0.07, 95% CI 0.03 to 0.11, I² = 21%), although the interval between platelet transfusions was only shown to be significantly shorter following multiple Intercept® pathogen-reduced platelet transfusion when compared with standard platelet transfusion (MD -0.51, 95% CI -0.66 to -0.37, I² = 0%). In trials of multiple pathogen-reduced platelets, our analyses showed the one- and 24-hour count and corrected count increments to be significantly inferior to standard platelets. However, one-hour increments were similar in trials of single platelet transfusions, although the 24-hour count and corrected count increments were again significantly lower. AUTHORS' CONCLUSIONS We found no evidence of a difference in mortality, 'clinically significant' or 'severe bleeding', transfusion reactions or adverse events between pathogen-reduced and standard platelets. For a range of laboratory outcomes the results indicated evidence of some benefits for standard platelets over pathogen-reduced platelets. These conclusions are based on data from 1422 patients included in 10 trials. Results from ongoing or new trials are required to determine if there are clinically important differences in bleeding risk between pathogen-reduced platelet transfusions and standard platelet transfusions. Given the variability in trial design, bleeding assessment and quality of outcome reporting, it is recommended that future trials apply standardised approaches to outcome assessment and follow-up, including safety reporting.
Collapse
Affiliation(s)
- Caroline Butler
- Haematology Department, Oxford Radcliffe Hospital NHS Trust, Maidenhead, UK
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Ortiz A, Richa L, Defer C, Dernis D, Huart JJ, Tokarski C, Rolando C. Proteomics applied to transfusion plasma: the beginning of the story. Vox Sang 2013; 104:275-91. [PMID: 23438183 DOI: 10.1111/j.1423-0410.2012.01663.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
'Safe blood' is and has always been the major concern in transfusion medicine. Plasma can undergo virus inactivation treatments based on physicochemical, photochemical or thermal methodologies for pathogen inactivation. The validation of these treatments is essentially based on clottability assays and clotting factors' titration; however, their impact on plasma proteins at the molecular level has not yet been evaluated. Proteomics appears as particularly adapted to identify, to localize and, consequently, to correlate these modifications to the biological activity change. At the crossroads of biology and analytical sciences, proteomics is the large-scale study of proteins in tissues, physiological fluids or cells at a given moment and in a precise environment. The proteomic strategy is based on a set of methodologies involving separative techniques like mono- and bidimensional gel electrophoresis and chromatography, analytical techniques, especially mass spectrometry, and bioinformatics. Even if plasma has been extensively studied since the very beginning of proteomics, its application to transfusion medicine has just begun. In the first part of this review, we present the principles of proteomics analysis. Then, we propose a state of the art of proteomics applied to plasma analysis. Finally, the use of proteomics for the evaluation of the impact of storage conditions and pathogen inactivation treatments applied to transfusion plasma and for the evaluation of therapeutic protein fractionated is discussed.
Collapse
Affiliation(s)
- A Ortiz
- USR CNRS 3290, Miniaturisation pour la Synthèse, l'Analyse et la Protéomique (MSAP), Université de Lille 1, Sciences et Technologie, Villeneuve d'Ascq, France
| | | | | | | | | | | | | |
Collapse
|
15
|
Taira R, Satake M, Momose S, Hino S, Suzuki Y, Murokawa H, Uchida S, Tadokoro K. Residual risk of transfusion-transmitted hepatitis B virus (HBV) infection caused by blood components derived from donors with occult HBV infection in Japan. Transfusion 2012; 53:1393-404. [PMID: 23033944 DOI: 10.1111/j.1537-2995.2012.03909.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Nucleic acid amplification testing (NAT) for hepatitis B virus (HBV) during blood screening has helped to prevent transfusion-transmitted HBV infection (TT-HBV) in Japan. Nevertheless, 4 to 13 TT-HBV infections arise annually. STUDY DESIGN AND METHODS The Japanese Red Cross (JRC) analyzed repository samples of donated blood for TT-HBV that was suspected through hemovigilance. Blood donations implicated in TT-HBV infections were categorized as either window period (WP) or occult HBV infection (OBI) related. In addition, we analyzed blood from 4742 donors with low antibody to hepatitis B core antigen (anti-HBc) and antibody to hepatitis B surface antigen (anti-HBs) titers using individual-donation NAT (ID-NAT) to investigate the relationship between anti-HBc titer and proportion of viremic donors. RESULTS Introduction of a more sensitive NAT method for screening minipools of 20 donations increased the OBI detection rate from 3.9 to 15.2 per million, while also the confirmed OBI transmission rate increased from 0.67 to 1.49 per million. By contrast the WP transmission rate decreased from 0.92 to 0.46 per million. Testing repository samples of donations missed by minipools of 20 donations NAT showed that 75 and 85% of TT-HBV that arose from WP and OBI donations, respectively, would have been interdicted by ID-NAT. The ID-NAT trial revealed that 1.94% of donations with low anti-HBc and anti-HBs titers were viremic and that anti-HBc titers and the frequency of viremia did not correlate. CONCLUSIONS The JRC has elected to achieve maximal safety by discarding all units with low anti-HBc and anti-HBs titers that account for 1.3% of the total donations.
Collapse
Affiliation(s)
- Rikizo Taira
- From the Blood Service Headquarters and Central Blood Institute, Japanese Red Cross, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Rebulla P. From pH to MALDI-TOF: hundreds of spotted opportunities? J Proteomics 2012; 76 Spec No.:270-4. [PMID: 22889710 DOI: 10.1016/j.jprot.2012.07.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 11/16/2022]
Abstract
Current protocols for quality assurance of platelet concentrates used in transfusion therapy include evaluation of platelet count and pH, in vitro measurements of platelet lysis, membrane activation and microparticle release and assays of platelet ability to respond to aggregation stimuli and to hypotonic shock. Unfortunately, these assays show limited correlation to post-transfusion platelet survival and recovery in the recipient. This requires validation of platelet collection and storage systems with expensive and time consuming autologous transfusion studies in healthy volunteers with radiolabeled platelets. Furthermore, platelets from some donors show increased lesion during storage for reasons that are incompletely understood. This editorial discusses recent strides in proteomic technology which open interesting perspectives for improving current procedures for quality assurance of platelet concentrates and increasing the safety and effectiveness of platelet transfusion in medical and surgical conditions. This article is part of a Special Issue entitled: Integrated omics.
Collapse
Affiliation(s)
- Paolo Rebulla
- Center of Transfusion Medicine, Cellular Therapy and Cryobiology, Department of Regenerative Medicine, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milan, Italy.
| |
Collapse
|
17
|
Stanojkovic Z, Balint B, Antic A, Todorovic M, Ostojic G, Pavlovic M. Clinical efficacy of riboflavin and ultraviolet light inactivated fresh frozen plasma evaluated with INR-quantification. Transfus Apher Sci 2012; 47:33-7. [DOI: 10.1016/j.transci.2012.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Revised: 01/16/2012] [Accepted: 03/12/2012] [Indexed: 10/28/2022]
|
18
|
Proteomic analysis of Intercept-treated platelets. J Proteomics 2012; 76 Spec No.:316-28. [PMID: 22813878 DOI: 10.1016/j.jprot.2012.07.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 12/20/2022]
Abstract
In the past decades, transfusion medicine has been driven by the quest for increased safety against transfusion-transmitted infections, mainly by better donor selection and by the development of improved serological and nucleic-acid-based screening assays. Recently, pathogen reduction technologies became available and started to be implemented in several countries, with the primary goal to fight against bacterial contamination of blood products, a rare but dramatic event against which there was no definitive measure. Though pathogen reduction technologies represent a quantum leap in transfusion safety, the biomedical efficacy of platelet concentrates (PCs) treated with various pathogen reduction techniques has been recently questioned by clinical studies. Here, a gel-based proteomic analysis of PCs (n=5), Intercept-treated or untreated, from pooled buffy-coat (10 donors per PC) at Days 1, 2 and 8, shows that the Intercept process that is the most widespread pathogen reduction technique to date, has relatively low impact on the proteome of treated platelets: the process induces modifications of DJ-1 protein, glutaredoxin 5, and G(i)alpha 2 protein. As for the impact of storage, chloride intracellular channel protein 4 (CLIC4) and actin increased independently of Intercept treatment during storage. Whereas alteration of the DJ-1 protein and glutaredoxin 5 points out an oxidative stress-associated lesion, modification of G(i)alpha2 directly connects a possible Intercept-associated lesion to haemostatic properties of Intercept-treated platelets. This article is part of a Special Issue entitled: Integrated omics.
Collapse
|
19
|
North A, Ciaravino V, Mufti N, Corash L. Preclinical pharmacokinetic and toxicology assessment of red blood cells prepared with S-303 pathogen inactivation treatment. Transfusion 2011; 51:2208-18. [PMID: 21985050 DOI: 10.1111/j.1537-2995.2011.03132.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND A system has been developed to inactivate a wide spectrum of blood-borne pathogens in red blood cells (RBCs) before transfusion. The system utilizes S-303 to target nucleic acids of pathogens and white blood cells. The safety of pathogen inactivated RBC was assessed using S-303-treated RBCs (S-303 RBCs) and S-300, the primary degradation product of S-303. STUDY DESIGN AND METHODS As part of a preclinical safety evaluation program, intravenous toxicity, safety pharmacology, toxicokinetic, and pharmacokinetic studies were conducted in rats and dogs with S-303 RBCs and S-300. RESULTS Single and repeated transfusions of S-303 RBCs were well tolerated in rats and dogs at S-303 concentrations up to five times higher than that used to prepare RBCs for clinical use. For S-300, the doses ranged from the lowest level representative of a clinical exposure from transfusion of 1 unit (0.052 mg/kg/day) to up to the amount of S-300 that would result from exposure to more than 1900 units of RBCs (100 mg/kg/day). There were no related effects of S-303 RBCs or S-300 on mortality, clinical status, body weight, or clinical laboratory assessments and no evidence of organ toxicity. S-300 did not accumulate in the plasma of rats and dogs after repeated transfusions. For all the studies, plasma S-303 was consistently below the limit of quantitation. CONCLUSION The level of residual S-303 and S-300 in the treated blood component is well below that at which no adverse effects were observed. These results support further clinical development of S-303 RBCs for prevention of transfusion-transmitted infections.
Collapse
Affiliation(s)
- Anne North
- Department of Development and Clinical Research and Medical Affairs, Cerus Corp., Concord, California, USA.
| | | | | | | |
Collapse
|
20
|
Pathogen inactivation in fresh frozen plasma using riboflavin and ultraviolet light: Effects on plasma proteins and coagulation factor VIII. VOJNOSANIT PREGL 2011; 68:51-6. [DOI: 10.2298/vsp1101051s] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background/Aim. Riboflavin (vitamin B2) activated by ultraviolet (UV) light,
produces active oxygen which damages cell membrane and prevents replication
of the carrier of diseases (viruses, bacteria, protozoa) in all blood
products. The aim of this study was to establish the influence of the process
of photo inactivation in pathogens using riboflavin and UV rays on the
concentration of coagulation factor VIII:C (FVIII:C) and proteins in plasma
that were treated before freezing. Methods. The examination included 20 units
of plasma, separated from whole blood donated by voluntary blood donors
around 6 hours from the moment of collection. The units were pooled and
separated in to two groups: one consisted of 10 control units and the other
of 10 experimental units. Experimental units of the plasma were treated by
riboflavin (35 mL) and UV rays (6.24 J/mL, 265-370 nm) on Mirasol aparature
(Caridian BCT Biotechnologies, USA) in approximate duration of 6 minutes.
Furthermore, 35 mL of saline solution was added to the control plasma. One
sample for examining was taken from the control plasma (KG) and two residual
were taken from experimental plasma after the addition of riboflavin either
before (EG1) or post illumination (EG2). Results. Comparing the mean values
of FVIII:C (%) we noticed statistically significantly higher level in the EG1
group than in the EG2 group (65.00 ? 4.52 vs 63.20 ? 4.73; t = 4.323, p =
0.002), while between the KG and experimental groups (EG1 and EG2) there was
no statistically significant difference in the concentration of FVIII:C.
There was a statistically significant decrease of albumin concentration (g/L)
in the EG2 group comparing to the KG (33.35 ? 0.94 vs 31.94 ? 0.84; t =
3.534, p = 0.002), but there was no mentioned difference in albumin
concentration between the KG and the EG1, so as between the EG1 and the EG2.
Conclusion. Plasma inactivated by riboflavin and UV rays (Mirasol PRT sistem,
Caridian BCT, USA) keeps all the characteristics of conventional plasma, so
it could be used for the treatment of pathological conditions that demand
transfusion of fresh frozen plasma, or in patients with thrombotic
thrombocytopenic purpure when we use therapeutic exchange of plasma.
Collapse
|
21
|
Effects of use of riboflavin and ultraviolet light for pathogen inactivation on quality of platelet concentrates. VOJNOSANIT PREGL 2011; 68:489-94. [DOI: 10.2298/vsp1106489s] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background/Aim. Pathogen inactivation in blood and blood products is one of
the major means to achieve a zero risk blood supply and improve transfusion
safety. Riboflavin (vitamin B2) activated by ultraviolet (UV) light, produces
active oxygen which damages cell membrane and prevents replication of the
carrier of diseases (viruses, bacteria, protozoa) in all blood products. The
aim of this study was to establish the influence of the process of pathogens
photoinactivation using riboflavin and UV rays on the biochemical and
functional characteristics of platelet concentrates prepared from ?buffy
coat?. Methods. The examination included 80 platelet concentrates prepared
from ?buffy coat?, which was separated from whole blood donated by voluntary
blood donors around 6 hours from the moment of collection. Concentrates were
pooled, filtered and separated unton two groups: one consisted of 10 control
units and the other of 10 examined units (pooled platelet concentrates).
Examined units of the platelets were treated by riboflavin (35 mL) and UV
rays (6.24 J/mL, 265-370 nm) on Mirasol aparature (Caridian BCT
Biotechnologies, USA) in approximate duration of 6 min. A total of 35 mL of
saline solution was added to the control units. The samples for examining
were taken from the control and examined units initially (K0, I0), after the
addition of saline (K1) and riboflavin (I1), after illumination (I2), first
day of storage (K3, I3) and the fifth day of storage (K4, I4). The following
parameters were measured: platelet count and platelet yield, residual
erythrocyte and leukocyte count, pH, pO2, pCO2 and bacterial contamination.
Results. All the measured parameters showed a statistically significant
decrease comparing to K0 and I0; all the results of the first day of platelet
storage showed statistically significant decrease comparing to K1 and I1, and
all the results of the fifth day of platelet storage (K4, I4) showed a
statistically significant decrease comparing to K1 and K3 and to I1 and I3.
There was no the mentioned difference in the measured parameters between K4
and I4 (the end of storage - the fifth day). All the platelet units were
sterile till the seventh day, when the investigation ended. Conclusion.
Platelet concentrates inactivated by riboflavin and UV rays (Mirasol PRT
sistem, Caridian BCT, USA) keep all the characteristics assessed by the Guide
to the preparation, use and quality assurance of blood components (Council of
Europe), during the whole storage period (five days). The obtained data were
correlated with existing up to date literature and demonstrated that Mirasol
treated platelets were safe and could be incorporated effectively in the
routine blood bank and transfusion setting.
Collapse
|
22
|
McCullough J. Innovation in transfusion medicine and blood banking: documenting the record in 50 years of TRANSFUSION. Transfusion 2010; 50:2542-6. [PMID: 20667041 DOI: 10.1111/j.1537-2995.2010.02787.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jeffrey McCullough
- Department of Laboratory Medicine & Pathology, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
23
|
Abstract
Efforts to reduce the risk of transfusion-transmitted infectious diseases began more than 4 decades ago with testing donated blood for syphilis. During the subsequent 4 decades, the number of recognized blood-borne transmissible agents and new laboratory tests has proliferated to a logistical breaking point. Further, the number of "emerging agents" which might enter the donor population is increasing continuously. In the search for an alternative to the laboratory testing strategy, pathogen-reduction technologies have emerged as the most promising. The model for this paradigm is pasteurization of a bottle of cow's milk. No matter what infective agent may be present in freshly collected cow's milk, pasteurization, i.e., a generic purification process can eliminate all potential infectivity, while preserving its essential biological properties--and an affordable cost. Several manufacturers have undertaken the challenge of developing a pathogen-reduction technology for blood components. Some novel technologies have proven successful for pooled plasma derivatives such as immune globulins, coagulation factor concentrate concentrates and albumin. The greatest challenge is finding a technology that is suitable for red blood cell and platelet components, whereas significant progress has been made already for pathogen-reduced plasma products. The present review addresses the status of implementation of pathogen-reduced plasma products in the global market. Some blood centers and hospital blood banks in Europe and the Middle East have begun to distribute pathogen-reduced plasma, but no pathogen-reduced plasma product is presently approved by the US Food and Drug Administration. While many observers in the United States focus on the regulatory process as the impediment to widespread implementation, the real challenge will be paying the surcharge for the pathogen-reduction process - an as yet unspecified figure - but likely to add a very substantial amount to the annual healthcare budget.
Collapse
|
24
|
Tanaka S, Hayashi T, Tateyama H, Matsumura K, Hyon SH, Hirayama F. Application of the bactericidal activity of ε-poly-l-lysine to the storage of human platelet concentrates. Transfusion 2010; 50:932-40. [DOI: 10.1111/j.1537-2995.2009.02503.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
Epstein JS. Alternative strategies in assuring blood safety: An overview. Biologicals 2010; 38:31-5. [PMID: 20110174 DOI: 10.1016/j.biologicals.2009.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 10/23/2009] [Indexed: 12/16/2022] Open
Abstract
Assuring transfusion safety is an essential element of health care in all countries, requiring government commitment, national policy and a legal framework. Fundamental safety strategies include selection of low risk donors, Good Manufacturing Practices in preparation of blood components, and appropriate clinical use including avoidance of unnecessary transfusions. Hemovigilance, including surveillance for known adverse events and sentinel reporting of unexpected adverse events, enhances safety through benchmarking to promote best practices and by enabling rapid responses to new threats. Preventing transmission of infectious diseases is a principal safety concern. Selection of low risk donors includes use of screening questions to elicit risk factors known to be associated with transmissible infections. Laboratory testing for specific infectious disease markers is an established strategy for interdicting contaminated donations. The sensitivity, specificity, and operational convenience of laboratory testing have improved over time and newer technologies are imminent. Donor screening and laboratory testing, while highly effective in reducing risk, cannot eliminate all risk from known agents and must be developed de novo to address emerging infections. In contrast, pathogen reduction technologies offer the possibility for robust inactivation of a broad spectrum of blood transmissible agents and provide an added safeguard against newly emerging infectious threats of most types. Current pathogen reduction methods also inactivate leukocytes, adding safety benefits similar to leukocyte removal and product irradiation. However, to date, concerns about the safety and efficacy of cellular blood components treated by pathogen reduction have prevented approval of these technologies in the U.S. and Canada. FDA is promoting clinical and basic scientific studies to clarify these issues and would consider alternative approaches to assuring blood safety if pathogen reduction technologies are proven to be safe and effective.
Collapse
Affiliation(s)
- Jay S Epstein
- Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration, HFM-300, 1401 Rockville Pike, Rockville, MD 20852, USA.
| |
Collapse
|
26
|
Study of coagulation function in thawed apheresis plasma for photochemical treatment by amotosalen and UVA. Vox Sang 2009; 96:213-8. [DOI: 10.1111/j.1423-0410.2008.001147.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
27
|
Burnouf T, Tseng YH, Kuo YP, Su CY. Solvent/detergent treatment of platelet concentrates enhances the release of growth factors. Transfusion 2008; 48:1090-8. [DOI: 10.1111/j.1537-2995.2008.01691.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
|