1
|
Kwon BK, Tetreault LA, Martin AR, Arnold PM, Marco RAW, Newcombe VFJ, Zipser CM, McKenna SL, Korupolu R, Neal CJ, Saigal R, Glass NE, Douglas S, Ganau M, Rahimi-Movaghar V, Harrop JS, Aarabi B, Wilson JR, Evaniew N, Skelly AC, Fehlings MG. A Clinical Practice Guideline for the Management of Patients With Acute Spinal Cord Injury: Recommendations on Hemodynamic Management. Global Spine J 2024; 14:187S-211S. [PMID: 38526923 DOI: 10.1177/21925682231202348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
STUDY DESIGN Clinical practice guideline development following the GRADE process. OBJECTIVES Hemodynamic management is one of the only available treatment options that likely improves neurologic outcomes in patients with acute traumatic spinal cord injury (SCI). Augmenting mean arterial pressure (MAP) aims to improve blood perfusion and oxygen delivery to the injured spinal cord in order to minimize secondary ischemic damage to neural tissue. The objective of this guideline was to update the 2013 AANS/CNS recommendations on the hemodynamic management of patients with acute traumatic SCI, acknowledging that much has been published in this area since its publication. Specifically, we sought to make recommendations on 1. The range of mean arterial pressure (MAP) to be maintained by identifying an upper and lower MAP limit; 2. The duration of such MAP augmentation; and 3. The choice of vasopressor. Additionally, we sought to make a recommendation on spinal cord perfusion pressure (SCPP) targets. METHODS A multidisciplinary guideline development group (GDG) was formed that included health care professionals from a wide range of clinical specialities, patient advocates, and individuals living with SCI. The GDG reviewed the 2013 AANS/CNS guidelines and voted on whether each recommendation should be endorsed or updated. A systematic review of the literature, following PRISMA standards and registered in PROSPERO, was conducted to inform the guideline development process and address the following key questions: (i) what are the effects of goal-directed interventions to optimize spinal cord perfusion on extent of neurological recovery and rates of adverse events at any time point of follow-up? and (ii) what are the effects of particular monitoring techniques, perfusion ranges, pharmacological agents, and durations of treatment on extent of neurological recovery and rates of adverse events at any time point of follow-up? The GDG combined the information from this systematic review with their clinical expertise in order to develop recommendations on a MAP target range (specifically an upper and lower limit to target), the optimal duration for MAP augmentation, and the use of vasopressors or inotropes. Using methods outlined by the GRADE working group, recommendations were formulated that considered the balance of benefits and harms, financial impact, acceptability, feasibility and patient preferences. RESULTS The GDG suggested that MAP should be augmented to at least 75-80 mmHg as the "lower limit," but not actively augmented beyond an "upper limit" of 90-95 mmHg in order to optimize spinal cord perfusion in acute traumatic SCI. The quality of the evidence around the "target MAP" was very low, and thus the strength of this recommendation is weak. For duration of hemodynamic management, the GDG "suggested" that MAP be augmented for a duration of 3-7 days. Again, the quality of the evidence around the duration of MAP support was very low, and thus the strength of this recommendation is also weak. The GDG felt that a recommendation on the choice of vasopressor or the use of SCPP targets was not warranted, given the dearth of available evidence. CONCLUSION We provide new recommendations for blood pressure management after acute SCI that acknowledge the limitations of the current evidence on the relationship between MAP and neurologic recovery. It was felt that the low quality of existing evidence and uncertainty around the relationship between MAP and neurologic recovery justified a greater range of MAP to target, and for a broader range of days post-injury than recommended in previous guidelines. While important knowledge gaps still remain regarding hemodynamic management, these recommendations represent current perspectives on the role of MAP augmentation for acute SCI.
Collapse
Affiliation(s)
- Brian K Kwon
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| | | | - Allan R Martin
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | - Paul M Arnold
- Department of Neurosurgery, University of Illinois Champaign-Urbana, Urbana, IL, USA
| | - Rex A W Marco
- Department of Orthopedic Surgery, Houston Methodist Hospital, Houston, TX, USA
| | - Virginia F J Newcombe
- University Division of Anaesthesia and PACE, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Carl M Zipser
- Spinal Cord Injury Center, Balgrist University Hospital, Zurich, Switzerland
| | | | - Radha Korupolu
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, USA
| | - Chris J Neal
- Department of Surgery, Uniformed Services University, Bethesda, MD, USA
| | - Rajiv Saigal
- Department of Neurological Surgery, University of Washington, Seattle, WA, USA
| | - Nina E Glass
- Department of Surgery, Rutgers, New Jersey Medical School, University Hospital, Newark, NJ
| | - Sam Douglas
- Praxis Spinal Cord Institute, Vancouver, BC, Canada
| | - Mario Ganau
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - James S Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jefferson R Wilson
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Nathan Evaniew
- McCaig Institute for Bone and Joint Health, Department of Surgery, Orthopaedic Surgery, Cumming School of Medicine, University of Calgary, AB, Canada
| | | | - Michael G Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
2
|
Evaniew N, Davies B, Farahbakhsh F, Fehlings MG, Ganau M, Graves D, Guest JD, Korupolu R, Martin AR, McKenna SL, Tetreault LA, Vedantam A, Brodt ED, Skelly AC, Kwon BK. Interventions to Optimize Spinal Cord Perfusion in Patients With Acute Traumatic Spinal Cord Injury: An Updated Systematic Review. Global Spine J 2024; 14:58S-79S. [PMID: 38526931 DOI: 10.1177/21925682231218737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
STUDY DESIGN Systematic review update. OBJECTIVES Interventions that aim to optimize spinal cord perfusion are thought to play an important role in minimizing secondary ischemic damage and improving outcomes in patients with acute traumatic spinal cord injuries (SCIs). However, exactly how to optimize spinal cord perfusion and enhance neurologic recovery remains controversial. We performed an update of a recent systematic review (Evaniew et al, J. Neurotrauma 2020) to evaluate the effects of Mean Arterial Pressure (MAP) support or Spinal Cord Perfusion Pressure (SCPP) support on neurological recovery and rates of adverse events among patients with acute traumatic SCI. METHODS We searched PubMed/MEDLINE, EMBASE and ClinicalTrials.gov for new published reports. Two reviewers independently screened articles, extracted data, and evaluated risk of bias. We implemented the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach to rate confidence in the quality of the evidence. RESULTS From 569 potentially relevant new citations since 2019, we identified 9 new studies for inclusion, which were combined with 19 studies from a prior review to give a total of 28 studies. According to low or very low quality evidence, the effect of MAP support on neurological recovery is uncertain, and increased SCPP may be associated with improved neurological recovery. Both approaches may involve risks for specific adverse events, but the importance of these adverse events to patients remains unclear. Very low quality evidence failed to yield reliable guidance about particular monitoring techniques, perfusion ranges, pharmacological agents, or durations of treatment. CONCLUSIONS This update provides an evidence base to support the development of a new clinical practice guideline for the hemodynamic management of patients with acute traumatic SCI. While avoidance of hypotension and maintenance of spinal cord perfusion are important principles in the management of an acute SCI, the literature does not provide high quality evidence in support of a particular protocol. Further prospective, controlled research studies with objective validated outcome assessments are required to examine interventions to optimize spinal cord perfusion in this setting.
Collapse
Affiliation(s)
- Nathan Evaniew
- McCaig Institute for Bone and Joint Health, Department of Surgery, Orthopaedic Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Benjamin Davies
- Department of Neurosurgery, Cambridge University, Cambridge, UK
| | - Farzin Farahbakhsh
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael G Fehlings
- Division of Neurosurgery and Spine Program, Department of Surgery, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mario Ganau
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Daniel Graves
- College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA USA
| | - James D Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Radha Korupolu
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, USA
| | - Allan R Martin
- Department of Neurological Surgery, University of California, Davis, CA, USA
| | | | | | - Aditya Vedantam
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | | | - Brian K Kwon
- Department of Orthopaedics, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
3
|
All over the MAP: describing pressure variability in acute spinal cord injury. Spinal Cord 2022; 60:470-475. [PMID: 35418625 DOI: 10.1038/s41393-022-00802-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Observational study. OBJECTIVES To examine the feasibility of meeting the current clinical guidelines for the hemodynamic management of acute spinal cord injury (SCI) which recommend maintaining mean arterial pressure (MAP) at 85-90 mmHg in the days following injury. METHODS This study examined data collected minute-by-minute to describe the pressure profile in the first 5 days following SCI in 16 patients admitted to the Intensive Care Unit at Vancouver General Hospital (40 ± 19 years, 13 M/3 F, C4-T11). MAP and intrathecal pressure (ITP) were monitored at 100 Hz by arterial and lumbar intrathecal catheters, respectively, and reported as the average of each minute. Spinal cord perfusion pressure was calculated as the difference between MAP and ITP. The minute-to-minute difference (MMdiff) of each pressure variable was calculated as the absolute difference between consecutive minutes. RESULTS Only 24 ± 7% of MAP recordings were between 85 and 90 mmHg. Average MAP MMdiff was ~3 mmHg. The percentage of MAP recordings within target range was negatively correlated with the degree of variability (i.e. MMdiff; r = -0.64, p < 0.008) whereas higher mean MAP was correlated with greater variability (r = 0.57, p = 0.021). CONCLUSIONS Our findings point to the 'real life' challenges in maintaining MAP in acute SCI patients. Given MAP fluctuated ~3 mmHg minute-to-minute, maintaining MAP within a 5 mmHg range with conventional volume replacement and vasopressors presents an almost impossible task for clinicians and warrants reconsideration of current management guidelines.
Collapse
|
4
|
Costa F, Sharif S, Bajamal AH, Shaikh Y, Anania CD, Zileli M. Clinical and Radiological Factors Affecting Thoracolumbar Fractures Outcome: WFNS Spine Committee Recommendations. Neurospine 2021; 18:693-703. [PMID: 35000322 PMCID: PMC8752690 DOI: 10.14245/ns.2142518.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/10/2021] [Accepted: 08/16/2021] [Indexed: 11/19/2022] Open
Abstract
To obtain a list of recommendations about clinical and radiological factors affecting outcome in thoraco-lumbar fractures with the aim of helping spine surgeons in daily practice. A systematic literature search in PubMed and Google Scholar database was done from 2010 to 2020 on the topic "thoracolumbar fracture AND radiology AND surgical outcomes" and "thoracolumbar fracture AND radiology AND surgical outcomes." A total of 58 papers were analyzed and WFNS (World Federation of Neurosurgical Societies) Spine Committee organized 2 consensus meetings to formulate the specific recommendations the first in Peshawar in December 2019 and in a subsequent virtual meeting in June 2020 to reach an agreement. Both meetings utilized the Delphi method to analyze preliminary literature review statements based on the current evidence levels to generate recommendations through a comprehensive voting session. Eight statements were presented and reached the consensus about this topic. A variety of clinical factors is known to influence outcome of patients with thoracolumbar fractures. Some of these are well-known established factors such as blood pressure augmentation and patient age, while some are not well studied. Overall, the quality of evidence is low and we need more randomized controlled studies to validate our results. Similarly, radiological factors that can predict outcome are well stated and there is a high accordance worldwide. In reverse, still under debate is the application to choose which surgical treatment is advisable based on them.
Collapse
Affiliation(s)
- Francesco Costa
- IRCCS Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Salman Sharif
- Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | - Abdul Hafid Bajamal
- Division of Neuro-Spine, Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Airlangga, Indonesia
- Airlangga University Hospital, Surabaya, Indonesia
| | - Yousuf Shaikh
- Department of Neurosurgery, Liaquat National Hospital and Medical College, Karachi, Pakistan
| | | | - Mehmet Zileli
- Department of Neurosurgery, Ege University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
5
|
Torres-Espín A, Haefeli J, Ehsanian R, Torres D, Almeida CA, Huie JR, Chou A, Morozov D, Sanderson N, Dirlikov B, Suen CG, Nielson JL, Kyritsis N, Hemmerle DD, Talbott JF, Manley GT, Dhall SS, Whetstone WD, Bresnahan JC, Beattie MS, McKenna SL, Pan JZ, Ferguson AR. Topological network analysis of patient similarity for precision management of acute blood pressure in spinal cord injury. eLife 2021; 10:68015. [PMID: 34783309 PMCID: PMC8639149 DOI: 10.7554/elife.68015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/23/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Predicting neurological recovery after spinal cord injury (SCI) is challenging. Using topological data analysis, we have previously shown that mean arterial pressure (MAP) during SCI surgery predicts long-term functional recovery in rodent models, motivating the present multicenter study in patients. Methods: Intra-operative monitoring records and neurological outcome data were extracted (n = 118 patients). We built a similarity network of patients from a low-dimensional space embedded using a non-linear algorithm, Isomap, and ensured topological extraction using persistent homology metrics. Confirmatory analysis was conducted through regression methods. Results: Network analysis suggested that time outside of an optimum MAP range (hypotension or hypertension) during surgery was associated with lower likelihood of neurological recovery at hospital discharge. Logistic and LASSO (least absolute shrinkage and selection operator) regression confirmed these findings, revealing an optimal MAP range of 76–[104-117] mmHg associated with neurological recovery. Conclusions: We show that deviation from this optimal MAP range during SCI surgery predicts lower probability of neurological recovery and suggest new targets for therapeutic intervention. Funding: NIH/NINDS: R01NS088475 (ARF); R01NS122888 (ARF); UH3NS106899 (ARF); Department of Veterans Affairs: 1I01RX002245 (ARF), I01RX002787 (ARF); Wings for Life Foundation (ATE, ARF); Craig H. Neilsen Foundation (ARF); and DOD: SC150198 (MSB); SC190233 (MSB); DOE: DE-AC02-05CH11231 (DM). Spinal cord injury is a devastating condition that involves damage to the nerve fibers connecting the brain with the spinal cord, often leading to permanent changes in strength, sensation and body functions, and in severe cases paralysis. Scientists around the world work hard to find ways to treat or even repair spinal cord injuries but few patients with complete immediate paralysis recover fully. Immediate paralysis is caused by direct damage to neurons and their extension in the spinal cord. Previous research has shown that blood pressure regulation may be key in saving these damaged neurons, as spinal cord injuries can break the communication between nerves that is involved in controlling blood pressure. This can lead to a vicious cycle of dysregulation of blood pressure and limit the supply of blood and oxygen to the damaged spinal cord tissue, exacerbating the death of spinal neurons. Management of blood pressure is therefore a key target for spinal cord injury care, but so far, the precise thresholds to enable neurons to recover are poorly understood. To find out more, Torres-Espin, Haefeli et al. used machine learning software to analyze previously recorded blood pressure and heart rate data obtained from 118 patients that underwent spinal cord surgery after acute spinal cord injury. The analyses revealed that patients who suffered from either low or high blood pressure during surgery had poorer prospects of recovery. Statistical models confirming these findings showed that the optimal blood pressure range to ensure recovery lies between 76 to 104-117 mmHg. Any deviation from this narrow window would dramatically worsen the ability to recover. These findings suggests that dysregulated blood pressure during surgery affects to odds of recovery in patients with a spinal cord injury. Torres-Espin, Haefeli et al. provide specific information that could improve current clinical practice in trauma centers. In the future, such machine learning tools and models could help develop real-time models that could predict the likelihood of a patient’s recovery following spinal cord injury and related neurological conditions.
Collapse
Affiliation(s)
- Abel Torres-Espín
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - Jenny Haefeli
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - Reza Ehsanian
- Division of Physical Medicine and Rehabilitation, Department of Orthopaedics and Rehabilitation, University of New Mexico School of Medicine, Albuquerque, United States
| | - Dolores Torres
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - Carlos A Almeida
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - J Russell Huie
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States.,San Francisco Veterans Affairs Healthcare System, San Francisco, United States
| | - Austin Chou
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - Dmitriy Morozov
- Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, United States
| | | | - Benjamin Dirlikov
- Rehabilitation Research Center, Santa Clara Valley Medical Center, San Jose, United States
| | - Catherine G Suen
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - Jessica L Nielson
- Department of Psychiatry and Behavioral Science, and University of Minnesota, Minneapolis, United States.,Institute for Health Informatics, University of Minnesota, Minneapolis, United States
| | - Nikos Kyritsis
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - Debra D Hemmerle
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - Jason F Talbott
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, United States
| | - Geoffrey T Manley
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - Sanjay S Dhall
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - William D Whetstone
- Department of Emergency Medicine, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - Jacqueline C Bresnahan
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States.,San Francisco Veterans Affairs Healthcare System, San Francisco, United States
| | - Michael S Beattie
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States.,San Francisco Veterans Affairs Healthcare System, San Francisco, United States
| | - Stephen L McKenna
- Department of Physical Medicine and Rehabilitation, Santa Clara Valley Medical Center, San Jose, United States.,Department of Neurosurgery, Stanford University, Stanford, United States
| | - Jonathan Z Pan
- Department of Anesthesia and Perioperative Care, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States
| | - Adam R Ferguson
- Weill Institute for Neurosciences; Brain and Spinal Injury Center (BASIC), Department of Neurological Surgery, University of California, San Francisco; Zuckerberg San Francisco General Hospital and Trauma Center, San Francisco, United States.,San Francisco Veterans Affairs Healthcare System, San Francisco, United States
| | | |
Collapse
|
6
|
Cheung A, Tu L, Manouchehri N, Kim KT, So K, Webster M, Fisk S, Tigchelaar S, Dalkilic SS, Sayre EC, Streijger F, Macnab A, Kwon BK, Shadgan B. Continuous Optical Monitoring of Spinal Cord Oxygenation and Hemodynamics during the First Seven Days Post-Injury in a Porcine Model of Acute Spinal Cord Injury. J Neurotrauma 2020; 37:2292-2301. [DOI: 10.1089/neu.2020.7086] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Amanda Cheung
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lorna Tu
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyoung-Tae Kim
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Neurosurgery, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Kitty So
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan Webster
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shera Fisk
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Seth Tigchelaar
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sara S. Dalkilic
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eric C. Sayre
- Arthritis Research Canada, Richmond, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew Macnab
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Babak Shadgan
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Orthopedics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
7
|
Sharif S, Jazaib Ali MY. Outcome Prediction in Spinal Cord Injury: Myth or Reality. World Neurosurg 2020; 140:574-590. [DOI: 10.1016/j.wneu.2020.05.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/20/2022]
|
8
|
Cheung A, Streijger F, So K, Okon EB, Manouchehri N, Shortt K, Kim KT, Keung MSM, Chan RM, Fong A, Sun J, Griesdale DE, Sehkon MS, Kwon BK. Relationship between Early Vasopressor Administration and Spinal Cord Hemorrhage in a Porcine Model of Acute Traumatic Spinal Cord Injury. J Neurotrauma 2020; 37:1696-1707. [PMID: 32233727 DOI: 10.1089/neu.2019.6781] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Current practice guidelines for acute spinal cord injury (SCI) recommend augmenting mean arterial blood pressure (MAP) for the first 7 days post-injury. After SCI, the cord may be compressed by the bone/ligaments of the spinal column, limiting regional spinal cord blood flow. Following surgical decompression, blood flow may be restored, and can potentially promote a "reperfusion" injury. The effects of MAP augmentation on the injured cord during the compressed and decompressed conditions have not been previously characterized. Here, we used our porcine model of SCI to examine the impact of MAP augmentation on blood flow, oxygenation, hydrostatic pressure, metabolism, and intraparenchymal (IP) hemorrhage within the compressed and then subsequently decompressed spinal cord. Yucatan mini-pigs underwent a T10 contusion injury followed by 2 h of sustained compression. MAP augmentation of ∼20 mm Hg was achieved with norepinephrine (NE). Animals received MAP augmentation either during the period of cord compression (CP), after decompression (DCP), or during both periods (CP-DCP). Probes to monitor spinal cord blood flow (SCBF), oxygenation, pressure, and metabolic responses were inserted into the cord parenchyma adjacent to the injury site to measure these responses. The cord was harvested for histological evaluation. MAP augmentation increased SCBF and oxygenation in all groups. In the CP-DCP group, spinal cord pressure steadily increased and histological analysis showed significantly increased hemorrhage in the spinal cord at and near the injury site. MAP augmentation with vasopressors may improve blood flow and reduce ischemia in the injured cord but may also induce undesirable increases in IP pressure and hemorrhage.
Collapse
Affiliation(s)
- Amanda Cheung
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Femke Streijger
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kitty So
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elena B Okon
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Neda Manouchehri
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Katelyn Shortt
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyoung-Tae Kim
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada.,Department of Neurosurgery, Kyungpook National University Hospital, Kyungpook National University, Daegu, South Korea
| | - Martin Sheung Man Keung
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan M Chan
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Allan Fong
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jenny Sun
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald E Griesdale
- Department of Anesthesiology, Division of Critical Care Medicine, Vancouver General Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Mypinder S Sehkon
- Department of Medicine, Division of Critical Care Medicine, Vancouver General Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian K Kwon
- International Collaboration on Repair Discoveries, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada.,Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
9
|
Evaniew N, Mazlouman SJ, Belley-Côté EP, Jacobs WB, Kwon BK. Interventions to Optimize Spinal Cord Perfusion in Patients with Acute Traumatic Spinal Cord Injuries: A Systematic Review. J Neurotrauma 2020; 37:1127-1139. [PMID: 32024432 DOI: 10.1089/neu.2019.6844] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Interventions to optimize spinal cord perfusion via support of mean arterial pressure (MAP) or spinal cord perfusion pressure (SCPP) are thought to play a critical role in the management of patients with acute traumatic spinal cord injuries, but there is ongoing controversy about efficacy and safety. We aimed to determine the effects of optimizing spinal cord perfusion on neurological recovery and risks for adverse events. We searched multiple databases for published and unpublished reports. Two reviewers independently screened articles, extracted data, and evaluated risk of bias. We synthesized data and evaluated confidence in anticipated treatment effects according to the Grades of Recommendation, Assessment, Development, and Evaluation (GRADE) approach. We identified 20 eligible observational studies and 1 eligible randomized controlled trial. According to low or very low quality evidence, the effect of MAP support on neurological recovery after acute traumatic spinal cord injury is uncertain, and the use of vasopressors to support MAP may be associated with increased rates of predominantly cardiac adverse events. Increased SCPP appears likely to be associated with improved neurological recovery, but SCPP monitoring via intradural catheters at the anatomical site of injury may involve increased risks of cerebrospinal fluid leakage requiring revision surgery or pseudomeningocele. No study directly compared the effects of specific MAP goal ranges, SCPP ranges, SCPP monitoring techniques, or durations of treatment. Very low quality evidence suggests that norepinephrine may have less risk of adverse events than dopamine. The current literature is insufficient to make strong recommendations about interventions to support spinal cord perfusion via MAP or SCPP goals in patients with acute traumatic spinal cord injuries. Data are compatible with a variety of treatment decisions, and individualized approaches may be optimal. Further investigation to clarify the risks, benefits, and alternatives to MAP or SCPP support in this population is warranted.
Collapse
Affiliation(s)
- Nathan Evaniew
- Vancouver Spine Surgery Institute (VSSI), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Shahriar J Mazlouman
- International Collaboration on Repair Discoveries (ICORD), Department of Orthopaedics, Vancouver, British Columbia, Canada
| | - Emilie P Belley-Côté
- Population Health Research Institute and Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - W Bradley Jacobs
- Department of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Brian K Kwon
- Vancouver Spine Surgery Institute (VSSI), Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries (ICORD), Department of Orthopaedics, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Exploration of surgical blood pressure management and expected motor recovery in individuals with traumatic spinal cord injury. Spinal Cord 2019; 58:377-386. [PMID: 31649323 PMCID: PMC7062632 DOI: 10.1038/s41393-019-0370-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/03/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
STUDY DESIGN Retrospective analysis. OBJECTIVE To assess the impact of mean arterial blood pressure (MAP) during surgical intervention for spinal cord injury (SCI) on motor recovery. SETTING Level-one Trauma Hospital and Acute Rehabilitation Hospital in San Jose, CA, USA. METHODS Twenty-five individuals with traumatic SCI who received surgical and acute rehabilitation care at a level-one trauma center were included in this study. The Surgical Information System captured intraoperative MAPs on a minute-by-minute basis and exposure was quantified at sequential thresholds from 50 to 104 mmHg. Change in International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) motor score was calculated based on physiatry evaluations at the earliest postoperative time and at discharge from acute rehabilitation. Linear regression models were used to estimate the rate of recovery across the entire MAP range. RESULTS An exploratory analysis revealed that increased time within an intraoperative MAP range (70-94 mmHg) was associated with ISNCSCI motor score improvement. A significant regression equation was found for the MAP range 70-94 mmHg (F[1, 23] = 5.07, r2 = 0.181, p = 0.034). ISNCSCI motor scores increased 0.039 for each minute of exposure to the MAP range 70-94 mmHg during the operative procedure; this represents a significant correlation between intraoperative time with MAP 70-94 and subsequent motor recovery. Blood pressure exposures above or below this range did not display a positive association with motor recovery. CONCLUSIONS Hypertension as well as hypotension during surgery may impact the trajectory of recovery in individuals with SCI, and there may be a direct relationship between intraoperative MAP and motor recovery.
Collapse
|
11
|
Conner AK, Briggs RG, Palejwala AH, Sali G, Sughrue ME. The safety of post-operative elevation of mean arterial blood pressure following brain tumor resection. J Clin Neurosci 2018; 58:156-159. [PMID: 30243597 DOI: 10.1016/j.jocn.2018.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/10/2018] [Indexed: 12/23/2022]
Abstract
We demonstrate the safety of artificially elevating the mean arterial blood pressure (MAP) greater than 85 mmHg or 10% above the mean MAP in patients with underlying hypertension during the acute post-operative period in patients undergoing surgery for resection of brain tumors. A retrospective review was undertaken of all patients undergoing surgery by the senior author between 2013 and 2018. Patients who underwent MAP therapy were analyzed for hemorrhagic and cardiac complications. A total of 1162 of 2270 post-operative brain tumor patients underwent MAP therapy after surgery for a minimum of 24 h post-operatively. Of these, 7/1162 (0.6%) patients experienced intra-cavitary hemorrhage within 5 days of surgery. Two of 7 (29%) patients were diagnosed with venous infarction. One of 7 (14%) patients experienced post-operative, intra-cavitary hemorrhage prior to the initiation of MAP therapy. The remaining 4/1162 (0.35%) patients experienced intra-cavitary hemorrhage post-operatively without clear etiology. In assessing cardiac outcomes, 2/1162 patients (0.2%) experienced elevated troponin levels. No patient demonstrated significant cardiac related morbidity or mortality within this cohort. Post-operative MAP therapy with a goal of maintaining MAP greater than 85 mmHg or 10% above the mean MAP in patients with underlying hypertension appears to be a safe intervention in brain tumor patients for at least 24 h in the post-operative period.
Collapse
Affiliation(s)
- Andrew K Conner
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Robert G Briggs
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ali H Palejwala
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Goksel Sali
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael E Sughrue
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
12
|
Saadeh YS, Smith BW, Joseph JR, Jaffer SY, Buckingham MJ, Oppenlander ME, Szerlip NJ, Park P. The impact of blood pressure management after spinal cord injury: a systematic review of the literature. Neurosurg Focus 2017; 43:E20. [DOI: 10.3171/2017.8.focus17428] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVESpinal cord injury (SCI) results in significant morbidity and mortality. Improving neurological recovery by reducing secondary injury is a major principle in the management of SCI. To minimize secondary injury, blood pressure (BP) augmentation has been advocated. The objective of this study was to review the evidence behind BP management after SCI.METHODSThis systematic review was conducted following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Using the PubMed database, the authors identified studies that investigated BP management after acute SCI. Information on BP goals, duration of BP management, vasopressor selection, and neurological outcomes were analyzed.RESULTSEleven studies that met inclusion criteria were identified. Nine studies were retrospective, and 2 were single-cohort prospective investigations. Of the 9 retrospective studies, 7 reported a goal mean arterial pressure (MAP) of higher than 85 mm Hg. For the 2 prospective studies, the MAP goals were higher than 85 mm Hg and higher than 90 mm Hg. The duration of BP management varied from more than 24 hours to 7 days in 6 of the retrospective studies that reported the duration of treatment. In both prospective studies, the duration of treatment was 7 days. In the 2 prospective studies, neurological outcomes were stable to improved with BP management. The retrospective studies, however, were contradictory with regard to the correlation of BP management and outcomes. Dopamine, norepinephrine, and phenylephrine were the agents that were frequently used to augment BP. However, more complications have been associated with dopamine use than with the other vasopressors.CONCLUSIONSThere are no high-quality data regarding optimal BP goals and duration in the management of acute SCI. Based on the highest level of evidence available from the 2 prospective studies, MAP goals of 85–90 mm Hg for a duration of 5–7 days should be considered. Norepinephrine for cervical and upper thoracic injuries and phenylephrine or norepinephrine for mid- to lower thoracic injuries should be considered.
Collapse
|
13
|
Sabit B, Zeiler FA, Berrington N. The Impact of Mean Arterial Pressure on Functional Outcome Post Trauma-Related Acute Spinal Cord Injury: A Scoping Systematic Review of the Human Literature. J Intensive Care Med 2016; 33:3-15. [DOI: 10.1177/0885066616672643] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: To perform a scoping systematic review on the literature surrounding mean arterial pressure (MAP) and functional outcomes post traumatic acute spinal cord injury (ASCI). Methods: We performed a systematic review of the literature via searching MEDLINE, BIOSIS, EMBASE, Global Health, SCOPUS, and Cochrane Library from inception to January 2015. We also performed a handsearch of various published meeting proceedings. Through a 2-step review process, employing 2 independent reviewers, we selected articles for the final review based on predefined inclusion/exclusion criteria. Results: Nine studies were included in the final review. Only 2 were prospective studies. All studies documented some degree of objective functional outcome in relation to MAP posttraumatic ASCI. Four studies documented a relation between higher MAP and improved functional outcome. Five studies failed to show any relationship between MAP and functional outcome. Conclusions: Although no definitive conclusions could be reached based on the data collected, this study does give valuable insight into future avenues of research on the topic of hemodynamic management in traumatic ASCI as well as provides guidelines for refinement of future study design.
Collapse
Affiliation(s)
- Behzad Sabit
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Frederick Adam Zeiler
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
- Clinician Investigator Program, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Neil Berrington
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
14
|
Hawryluk G, Whetstone W, Saigal R, Ferguson A, Talbott J, Bresnahan J, Dhall S, Pan J, Beattie M, Manley G. Mean Arterial Blood Pressure Correlates with Neurological Recovery after Human Spinal Cord Injury: Analysis of High Frequency Physiologic Data. J Neurotrauma 2015; 32:1958-67. [PMID: 25669633 DOI: 10.1089/neu.2014.3778] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Current guidelines for the care of patients with acute spinal cord injuries (SCIs) recommend maintaining mean arterial pressure (MAP) values of 85-90 mm Hg for 7 days after an acute SCI however, little evidence supports this recommendation. We sought to better inform the relationship between MAP values and neurological recovery. A computer system automatically collected and stored q1 min physiological data from intensive care unit monitors on patients with SCI over a 6-year period. Data for 100 patients with acute SCI were collected. 74 of these patients had American Spinal Injury Association Impairment Scale (AIS) grades determined by physical examination on admission and at time of hospital discharge. Average MAP values as well as the proportion of MAP values below thresholds were explored for values from 120 mm Hg to 40 mm Hg in 1 mm Hg increments; the relationship between these measures and outcome was explored at various time points up to 30 days from the time of injury. A total of 994,875 q1 min arterial line blood pressure measurements were recorded for the included patients amid 1,688,194 min of recorded intensive care observations. A large proportion of measures were below 85 mm Hg despite generally acceptable average MAP values. Higher average MAP values correlated with improved recovery in the first 2-3 days after SCI while the proportion of MAP values below the accepted threshold of 85 mm Hg seemed a stronger correlate, decreasing in strength over the first 5-7 days after injury. This study provides strong evidence supporting a correlation between MAP values and neurological recovery. It does not, however, provide evidence of a causal relationship. Duration of hypotension may be more important than average MAP. It provides support for the notion of MAP thresholds in SCI recovery, and the highest MAP values correlated with the greatest degree of neurological recovery. The results are concordant with current guidelines in suggesting that MAP thresholds >85 mm Hg may be appropriate after acute SCI.
Collapse
Affiliation(s)
- Gregory Hawryluk
- 1 Department of Neurosurgery, University of Utah , Salt Lake City, Utah.,3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - William Whetstone
- 2 Department of Emergency Medicine, University of California , San Francisco, San Francisco, California
| | - Rajiv Saigal
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Adam Ferguson
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Jason Talbott
- 5 Department of Radiology, University of California , San Francisco, San Francisco, California
| | - Jacqueline Bresnahan
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Sanjay Dhall
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Jonathan Pan
- 6 Department of Anaesthesia, University of California , San Francisco, San Francisco, California
| | - Michael Beattie
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| | - Geoffrey Manley
- 3 Department of Brain and Spinal Cord Injury Center (BASIC), University of California , San Francisco, San Francisco, California.,4 Department of Neurosurgery, University of California , San Francisco, San Francisco, California
| |
Collapse
|
15
|
Hawryluk G, Garber S. Provision of nutrients after acute spinal cord injury: the implications of feast and famine. Neural Regen Res 2015; 10:1061-2. [PMID: 26330824 PMCID: PMC4541232 DOI: 10.4103/1673-5374.160081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2015] [Indexed: 11/16/2022] Open
|