1
|
Eriks-Hoogland IE, Barth MA, Müller LL, Braun D, Curt A, Arora M, Middleton JW, Pannek J. COVID-19 and spinal cord injury: clinical presentation, clinical course, and clinical outcomes of people hospitalised. Spinal Cord Ser Cases 2024; 10:5. [PMID: 38351025 PMCID: PMC10864293 DOI: 10.1038/s41394-024-00617-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
STUDY DESIGN Retrospective study OBJECTIVES: To describe the presenting symptoms/signs, clinical course and outcomes in hospitalised people with spinal cord injury (SCI) and symptomatic COVID-19 infections. SETTING One university hospital and two SCI centres in Switzerland. METHODS Descriptive analysis of symptoms/signs, clinical course and outcomes of people with SCI with symptomatic COVID-19 infections and need for hospitalisation. RESULTS Twenty-two people with SCI were included, 15 (68%) were male, median age 64.5 years (interquartile range, IQR, 52-73 years). Nine (41%) had tetraplegia, and eight (36%) were classified with motor-complete lesions. Frequent clinical symptoms were fever (59%), coughing (54%), fatigue (50%), and dyspnoea (27%). Most frequent complications were bacterial pulmonary superinfection (18%), and acute respiratory distress syndrome (18%). Fifteen persons (68%) needed oxygen therapy during the course of hospitalisation, and 7 (32%) people were ventilated. Median length of stay (LOS) was 23 days (IQR 15-35), varying by age for people under 60 years with a median LOS of 9 days (IQR 8-27), and for those older than 60 years with a median of 34 days (IQR 17-39), respectively. In total, 3 persons (14%) died during hospitalisation, all older with paraplegia. CONCLUSIONS Typical symptoms like fever and coughing were not present in all people. People with tetraplegia did not demonstrate worse outcomes, on the contrary, they had shorter LOS, no difference in ventilation needs, and no higher mortality compared to people with paraplegia. Older people showed longer LOS. This study recommends close supervision of the SCI population to detect early signs and symptoms of COVID-19 infection.
Collapse
Affiliation(s)
- Inge E Eriks-Hoogland
- Swiss Paraplegic Centre, Nottwil, Switzerland.
- Faculty of Health Sciences and Medicine at the University of Lucerne, Lucerne, Switzerland.
- Swiss Paraplegic Research, Nottwil, Switzerland.
| | | | | | - Dominique Braun
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Mohit Arora
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, NSW, Australia
- The Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - James W Middleton
- John Walsh Centre for Rehabilitation Research, Northern Sydney Local Health District, St Leonards, NSW, Australia
- The Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jürgen Pannek
- Swiss Paraplegic Centre, Nottwil, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Unplanned hospital admissions due to secondary health conditions after spinal cord injury: a population-based description of determinants of length of stay. Spinal Cord 2023; 61:290-295. [PMID: 36782017 DOI: 10.1038/s41393-023-00880-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/15/2023]
Abstract
STUDY DESIGN Population-based prospective study. OBJECTIVES To provide a population-based description of length of stay (LOS) and person-related risk factors following unplanned hospital admission due to a secondary health condition (SHC) in persons with spinal cord injury (SCI). SETTING Specialized SCI hospital and rehabilitation center in Switzerland. METHODS Descriptive analysis of LOS using routine clinical data of persons with SCI, who were acutely hospitalized between 01.01.2017-30.06.2018. Multivariable regression analysis was used to derive marginal predictions of LOS by acute SHCs and person characteristics. RESULTS The study included 183 persons, 83% were male, and the median age was 57 years (interquartile range, IQR, 49-67 years). SCI cause was traumatic in 160 (88.4%) cases, 92 (50.3%) were persons with tetraplegia, 147 (80.3%) were classified as motor complete lesions (American Spinal Injury Association Impairment Scale (AIS) A or B) and median time since injury (TSI) was 24 (IQR 13-34) years. Median LOS was 19 (IQR 9-39) days, varying from 74 (IQR 39-92) days for pressure ulcers, 13 (IQR 8-24) days for urinary tract infections (UTI), to 27 (IQR 18-47) days for fractures. LOS was prolonged in persons with multiple co-morbidities or those developing complications during hospitalization. Sex, SCI etiology and lesion level were not associated with LOS. CONCLUSIONS This population-based description identified substantial variation in LOS between acute SHCs and clinical complications as the main, potentially modifiable, person-related risk factors for extended hospital stay.
Collapse
|
3
|
Onate-Figuérez A, Avendaño-Coy J, Fernández-Canosa S, Soto-León V, López-Molina MI, Oliviero A. Factors Associated With Fatigue in People With Spinal Cord Injury: A Systematic Review and Meta-analysis. Arch Phys Med Rehabil 2023; 104:132-142. [PMID: 35964699 DOI: 10.1016/j.apmr.2022.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/13/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To investigate the association between fatigue and clinical and demographic variables in people with spinal cord injury (SCI). DATA SOURCES Five databases (MEDLINE, Physiotherapy Evidence Database, Cochrane, Google Scholar, Cumulative Index to Nursing and Allied Health) were searched up to November 2021. STUDY SELECTION Observational studies that reported the association between fatigue and clinical and demographic variables in English or Spanish were eligible. Reviews, qualitative research studies, and nonoriginal articles were excluded. Twenty-three of the 782 identified studies met the inclusion criteria for the meta-analysis. DATA EXTRACTION Two researchers independently extracted the data. The strength of the association between each factor and fatigue was determined by the effect size. When the results of the effect size were expressed with different statistics, the correlation coefficient was the preferred estimation. The risk of bias was assessed using the Appraisal Tool for Cross-Sectional Studies and the Newcastle-Ottawa Scale. DATA SUMMARY A pooled analysis of the associations between fatigue and 17 factors was performed. A direct association was found between fatigue and 9 factors (sorted by effect size): anxiety (r=0.57; 95% CI, 0.29-0.75), stress (r=0.54; 95% confidence interval [CI], 0.26-0.74), depression (r=0.47; 95% CI, 0.44-0.50), pain (r=0.34; 95% CI, 0.16-0.50), analgesic medication (r=0.32; 95% CI, 0.28-0.36), assistive devices (r=0.23; 95% CI, 0.17-0.29), lesion level (r=0.15; 95% CI, 0.07-0.23), incomplete SCI (r=0.13; 95% CI, 0.05-0.22), and medication (r=0.12; 95% CI, 0.01-0.23). An inverse association was found with 3 factors (sorted by effect size): self-efficacy (r=-0.63; 95% CI, -0.81 to -0.35), participation (r=-0.32; 95% CI, -0.58 to -0.001), and physical activity (r=-0.17; 95% CI, -0.28 to -0.05). No association was found with age, sex, educational level, time since injury, and spasticity. CONCLUSIONS Several factors were associated with fatigue in people with SCI, with those related to mental health showing the strongest associations. These results should be interpreted with caution because of the high heterogeneity observed in some factors.
Collapse
Affiliation(s)
- Ana Onate-Figuérez
- FENNSI Group, National Hospital for Paraplegics, SESCAM, Spain; GIFTO Group, Faculty of Physiotherapy and Nursing, Universidad de Castilla La Mancha (UCLM), Toledo; National Hospital for Paraplegics, SESCAM, Toledo, Spain
| | - Juan Avendaño-Coy
- GIFTO Group, Faculty of Physiotherapy and Nursing, Universidad de Castilla La Mancha (UCLM), Toledo.
| | | | | | | | | |
Collapse
|
4
|
Nabizadeh N, Crawford CH, Glassman SD, Dimar Ii JR, Carreon LY. Severity and Outcome of Neurologic Deficits in Patients with Pyogenic Spondylodiscitis: A Systematic Review. Orthop Clin North Am 2022; 53:105-112. [PMID: 34799016 DOI: 10.1016/j.ocl.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Patients with advanced pyogenic spondylodiscitis can present with neurologic deficits. However, the prevalence, severity, and outcome of the neurologic deficits are not well known. A systematic review was performed to improve the knowledge of this commonly encountered clinical scenario. The considerable number of severe neurologic deficits in addition to their poor recovery, even after surgical intervention, demonstrates that the early diagnosis of pyogenic spondylodiscitis is crucial. Prompt surgical intervention is likely associated with a greater chance of improvement of neurologic status than nonsurgical treatment.
Collapse
Affiliation(s)
- Naveed Nabizadeh
- Norton Leatherman Spine Center, 210 East Gray Street, Suite 900, Louisville, KY 40202, USA
| | - Charles H Crawford
- Norton Leatherman Spine Center, 210 East Gray Street, Suite 900, Louisville, KY 40202, USA; Department of Orthopaedic Surgery, University of Louisville School of Medicine, 550 South Jackson Street, 1st Floor ACB, Louisville, KY 40202, USA
| | - Steven D Glassman
- Norton Leatherman Spine Center, 210 East Gray Street, Suite 900, Louisville, KY 40202, USA; Department of Orthopaedic Surgery, University of Louisville School of Medicine, 550 South Jackson Street, 1st Floor ACB, Louisville, KY 40202, USA
| | - John R Dimar Ii
- Norton Leatherman Spine Center, 210 East Gray Street, Suite 900, Louisville, KY 40202, USA; Department of Orthopaedic Surgery, University of Louisville School of Medicine, 550 South Jackson Street, 1st Floor ACB, Louisville, KY 40202, USA
| | - Leah Y Carreon
- Norton Leatherman Spine Center, 210 East Gray Street, Suite 900, Louisville, KY 40202, USA.
| |
Collapse
|
5
|
Huynh V, Lütolf R, Rosner J, Luechinger R, Curt A, Kollias S, Hubli M, Michels L. Supraspinal nociceptive networks in neuropathic pain after spinal cord injury. Hum Brain Mapp 2021; 42:3733-3749. [PMID: 34132441 PMCID: PMC8288099 DOI: 10.1002/hbm.25401] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain following spinal cord injury involves plastic changes along the whole neuroaxis. Current neuroimaging studies have identified grey matter volume (GMV) and resting-state functional connectivity changes of pain processing regions related to neuropathic pain intensity in spinal cord injury subjects. However, the relationship between the underlying neural processes and pain extent, a complementary characteristic of neuropathic pain, is unknown. We therefore aimed to reveal the neural markers of widespread neuropathic pain in spinal cord injury subjects and hypothesized that those with greater pain extent will show higher GMV and stronger connectivity within pain related regions. Thus, 29 chronic paraplegic subjects and 25 healthy controls underwent clinical and electrophysiological examinations combined with neuroimaging. Paraplegics were demarcated based on neuropathic pain and were thoroughly matched demographically. Our findings indicate that (a) spinal cord injury subjects with neuropathic pain display stronger connectivity between prefrontal cortices and regions involved with sensory integration and multimodal processing, (b) greater neuropathic pain extent, is associated with stronger connectivity between the posterior insular cortex and thalamic sub-regions which partake in the lateral pain system and (c) greater intensity of neuropathic pain is related to stronger connectivity of regions involved with multimodal integration and the affective-motivational component of pain. Overall, this study provides neuroimaging evidence that the pain phenotype of spinal cord injury subjects is related to the underlying function of their resting brain.
Collapse
Affiliation(s)
- Vincent Huynh
- Department of Neuroradiology, Clinical Neuroscience CenterUniversity Hospital Zurich & University of ZurichZurichSwitzerland
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Robin Lütolf
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Jan Rosner
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland
- Department of Neurology, InselspitalBern University Hospital, University of BernBernSwitzerland
| | - Roger Luechinger
- Institute for Biomedical EngineeringUniversity and ETH ZürichZürichSwitzerland
| | - Armin Curt
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Spyridon Kollias
- Department of Neuroradiology, Clinical Neuroscience CenterUniversity Hospital Zurich & University of ZurichZurichSwitzerland
| | - Michèle Hubli
- Spinal Cord Injury CenterBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience CenterUniversity Hospital Zurich & University of ZurichZurichSwitzerland
| |
Collapse
|
6
|
Abstract
Traumatic spinal cord injury is a common neurologic insult worldwide that can result in severe disability. Early stabilization of the patient's airway, breathing, and circulation as well as cervical and thoracolumbar spinal immobilization is necessary to prevent additional injury and optimize outcomes. Computed tomography (CT) scan and magnetic resonance imaging (MRI) of the spinal column can assist with determining the extent of bony and ligamentous injury, which will guide surgical management. With or without surgical intervention, patients with spinal cord injury require intensive care unit management and close observation to monitor for potential complications.
Collapse
Affiliation(s)
- Ilyas Eli
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Neurosurgery, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - David P Lerner
- Department of Neurology, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Zoher Ghogawala
- Department of Neurosurgery, Lahey Hospital and Medical Center, Burlington, MA, USA.
| |
Collapse
|
7
|
Huynh V, Staempfli P, Luetolf R, Luechinger R, Curt A, Kollias S, Hubli M, Michels L. Investigation of Cerebral White Matter Changes After Spinal Cord Injury With a Measure of Fiber Density. Front Neurol 2021; 12:598336. [PMID: 33692736 PMCID: PMC7937730 DOI: 10.3389/fneur.2021.598336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Remote neurodegenerative changes in supraspinal white matter (WM) can manifest after central lesions such as spinal cord injury (SCI). The majority of diffusion tensor imaging (DTI) studies use traditional metrics such as fractional anisotropy (FA) and mean diffusivity (MD) to investigate microstructural changes in cerebral WM after SCI. However, interpretation of FA readouts is often challenged by inherent limitations of the tensor model. Recent developments in novel diffusion markers, such as fiber density (FD), allows more accurate depictions of WM pathways and has shown more reliable quantification of WM alterations compared to FA in recent studies of neurological diseases. This study investigated if FD provides useful characterization of supraspinal WM integrity after SCI in addition to the traditional DTI readouts. FA, MD, and FD maps were derived from diffusion datasets of 20 patients with chronic SCI and compared with 19 healthy controls (HC). Group differences were investigated across whole brain WM using tract-based spatial statistics and averaged diffusion values of the corticospinal tract (CST) and thalamic radiation (TR) were extracted for comparisons between HC and SCI subgroups. We also related diffusion readouts of the CST and TR with clinical scores of sensorimotor function. To investigate which diffusion markers of the CST and TR delineate HC and patients with SCI a receiver operating characteristic (ROC) analysis was performed. Overall, patients with an SCI showed decreased FA of the TR and CST. ROC analysis differentiated HC and SCI based on diffusion markers of large WM tracts including FD of the TR. Furthermore, patients' motor function was positively correlated with greater microstructural integrity of the CST. While FD showed the strongest correlation, motor function was also associated with FA and MD of the CST. In summary, microstructural changes of supraspinal WM in patients with SCI can be detected using FD as a complementary marker to traditional DTI readouts and correlates with their clinical characteristics. Future DTI studies may benefit from utilizing this novel marker to investigate complex large WM tracts in patient cohorts with varying presentations of SCI or neurodegenerative diseases.
Collapse
Affiliation(s)
- Vincent Huynh
- Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland.,Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Philipp Staempfli
- MR-Center of the Psychiatric University Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland.,Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Robin Luetolf
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Roger Luechinger
- Institute for Biomedical Engineering, University and ETH Zurich, Zurich, Switzerland
| | - Armin Curt
- Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Militskova A, Mukhametova E, Fatykhova E, Sharifullin S, Cuellar CA, Calvert JS, Grahn PJ, Baltina T, Lavrov I. Supraspinal and Afferent Signaling Facilitate Spinal Sensorimotor Network Excitability After Discomplete Spinal Cord Injury: A Case Report. Front Neurosci 2020; 14:552. [PMID: 32655351 PMCID: PMC7323764 DOI: 10.3389/fnins.2020.00552] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/04/2020] [Indexed: 12/25/2022] Open
Abstract
Objective In this study, we evaluated the role of residual supraspinal and afferent signaling and their convergence on the sublesional spinal network in subject diagnosed with complete paralysis (AIS-A). Methods A combination of electrophysiologic techniques with positional changes and subject-driven reinforcement maneuvers was implemented in this study. Electrical stimulation was applied transcutaneously at the T9-L2 vertebra levels and the spinal cord motor evoked potentials (SEMP) were recorded from leg muscles. To test the influence of positional changes, the subject was placed in (i) supine, (ii) upright with partial body weight bearing and (iii) vertically suspended without body weight bearing positions. Results Increase in amplitude of SEMP was observed during transition from supine to upright position, supporting the role of sensory input in lumbosacral network excitability. Additionally, amplitudes of SEMP were facilitated during reinforcement maneuvers, indicating a supralesional influence on sub-lesional network. After initial assessment, subject underwent rehabilitation therapy with following electrophysiological testing that reviled facilitation of SEMP. Conclusion These results demonstrate that combination of electrophysiological techniques with positional and reinforcement maneuvers can add to the diagnostics of discomplete SCI. These findings also support an idea that integration of supraspinal and afferent information on sub-lesional circuitry plays a critical role in facilitation of spinal sensorimotor network in discomplete SCI.
Collapse
Affiliation(s)
- Alena Militskova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elvira Mukhametova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Elsa Fatykhova
- Children's Republican Clinical Hospital of the Ministry of Health of the Republic of Tatarstan, Kazan, Russia
| | | | - Carlos A Cuellar
- Centro de Investigación en Ciencias de la Salud, Universidad Anáhuac México, Huixquilucan, Mexico
| | - Jonathan S Calvert
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Peter J Grahn
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States.,Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States
| | - Tatiana Baltina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Igor Lavrov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, United States.,Department of Neurology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
9
|
Farshad M, Aichmair A, Gerber C, Bauer DE. Classification of perioperative complications in spine surgery. Spine J 2020; 20:730-736. [PMID: 31877388 DOI: 10.1016/j.spinee.2019.12.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Perioperative complications affect surgical outcomes. Classification systems of perioperative complications are well established and widely applied in many surgical fields other than spine surgery. PURPOSE The aim of this study was to construct and validate a comprehensive classification system for perioperative complications in spine surgery. STUDY DESIGN Retrospective case series. METHODS A comprehensive classification system was constructed to stratify complications in spinal surgery and consequently applied to 934 patients who consecutively underwent spine surgery in a university hospital setting. A complication was defined as any kind of deviation from the normal perioperative course, ranging from a postoperative anemia to death. The comprehensive classifications system stratifies complications according to (1) complexity of index procedure (2) immediate cause of complication (surgical vs. medical) (3) the required treatment, and (4) potentially associated long-term functional deficits resulting from neural injury. Subsequently, the proposed classification system was validated by applying the duration of cumulative hospital stay as the primary outcome. RESULTS Perioperative complications were recorded in 135 (14.3%) out of 934 cases. There was a significant difference in the hospital stay between complications stratified according to therapeutic consequences, grade A: 5.6±1.6 (range: 3-8) days, grade B: 7.9±3.8 (range: 3-21) days, grade C: 13.1±8.1 (range: 4-59) days, and grade D: 55.2±56.6 (range: 14-198) days, respectively (p≤.001). Also, there was a significant difference in hospital stay between groups of increasing point difference of neurologic deficit, 0 versus -1 and -1 versus -2, respectively. CONCLUSION A comprehensive classification system for perioperative complications in spine surgery (considering four categories) is presented and validated. The categories therapeutic consequence (A-E) and decrease in neurological function correlate strongly with hospital stay.
Collapse
Affiliation(s)
- Mazda Farshad
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland.
| | - Alexander Aichmair
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| | - Christian Gerber
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| | - David Ephraim Bauer
- Department of Orthopaedics, Balgrist University Hospital, University of Zurich, Forchstrasse 340, Zurich 8008, Switzerland
| |
Collapse
|
10
|
Huynh V, Rosner J, Curt A, Kollias S, Hubli M, Michels L. Disentangling the Effects of Spinal Cord Injury and Related Neuropathic Pain on Supraspinal Neuroplasticity: A Systematic Review on Neuroimaging. Front Neurol 2020; 10:1413. [PMID: 32116986 PMCID: PMC7013003 DOI: 10.3389/fneur.2019.01413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/27/2019] [Indexed: 12/11/2022] Open
Abstract
Background: Spinal cord injury (SCI) and its accompanying changes of brain structure and function have been widely studied and reviewed. Debilitating chronic neuropathic pain (NP) is reported in 53% of SCI patients, and brain changes have been shown to be involved with the presence of this secondary complication. However, there is yet a synthesis of current studies that investigated brain structure, resting connectivity, and metabolite changes that accompanies this condition. Methods: In this review, a systematic search was performed using Medical Subject Headings heading search terms in PubMed and SCOPUS to gather the appropriate published studies. Neuroimaging studies that investigated supraspinal structural, resting-state connectivity, and metabolite changes in SCI subjects with NP were included. To this end, voxel-based morphometry, diffusion tensor imaging, resting-state functional MRI, magnetic resonance spectroscopy, and PET studies were summarized and reviewed. Further inclusion and exclusion criteria allowed delineation of appropriate studies that included SCI subgroups with and without NP. Results: A total of 12 studies were eligible for qualitative synthesis. Overall, current studies that investigated NP-associated changes within the SCI cohort show primarily metabolite concentration alterations in sensory-pain processing regions, alongside bidirectional changes of brain structure. Moreover, in comparison to healthy controls, there remains limited evidence of structural and connectivity changes but a range of alterations in metabolite concentrations in SCI subjects with NP. Conclusions: There is some evidence suggesting that the magnitude and presence of NP following SCI results in both adaptive and maladaptive structural plasticity of sensorimotor regions, alongside altered metabolism of brain areas involved with descending pain modulation, pain perception (i.e., anterior cingulate cortex) and sensory integration (i.e., thalamus). However, based on the fact that only a few studies investigated structural and glucose metabolic changes in chronic SCI subjects with NP, the underlying mechanisms that accompany this condition remains to be further elucidated. Future cross-sectional or longitudinal studies that aim to disentangle NP related to SCI may benefit from stricter constraints in subject cohorts, controlled subgroups, improved pain phenotyping, and implementation of multimodal approaches to discover sensitive biomarkers that profile pain and optimize treatment in SCI subjects with NP.
Collapse
Affiliation(s)
- Vincent Huynh
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Jan Rosner
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
- Department of Neurology, Bern University Hospital (Inselspital), University of Bern, Bern, Switzerland
| | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Spyros Kollias
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
| | - Michèle Hubli
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Lars Michels
- Department of Neuroradiology, University Hospital Zurich, Zurich, Switzerland
- MR-Center, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Tsai CY, Delgado AD, Weinrauch WJ, Manente N, Levy I, Escalon MX, Bryce TN, Spungen AM. Exoskeletal-Assisted Walking During Acute Inpatient Rehabilitation Leads to Motor and Functional Improvement in Persons With Spinal Cord Injury: A Pilot Study. Arch Phys Med Rehabil 2019; 101:607-612. [PMID: 31891715 DOI: 10.1016/j.apmr.2019.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/05/2019] [Accepted: 11/17/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To explore the potential effects of incorporating exoskeletal-assisted walking (EAW) into spinal cord injury (SCI) acute inpatient rehabilitation (AIR) on facilitating functional and motor recovery when compared with standard of care AIR. DESIGN A quasi-experimental design with a prospective intervention group (AIR with EAW) and a retrospective control group (AIR only). SETTING SCI AIR facility. PARTICIPANTS Ten acute inpatient participants with SCI who were eligible for locomotor training were recruited in the intervention group. Twenty inpatients with SCI were identified as matched controls by reviewing an AIR database, Uniform Data System for Medical Rehabilitation, by an individual blinded to the study. Both groups (N=30) were matched based on etiology, paraplegia/tetraplegia, completeness of injury, age, and sex. INTERVENTION EAW incorporated into SCI AIR. MAIN OUTCOME MEASURES FIM score, International Standards for Neurological Classification of Spinal Cord Injury Upper Extremity Motor Score and Lower Extremity Motor Scores (LEMS), and EAW session results, including adverse events, walking time, and steps. RESULTS Changes from admission to discharge LEMS and FIM scores were significantly greater in the intervention group (LEMS change: 14.3±10.1; FIM change: 37.8±10.8) compared with the control group (LEMS change: 4.6±6.1; FIM change: 26.5±14.3; Mann-Whitney U tests: LEMS, P<.01 and FIM, P<.05). One adverse event (minor skin abrasion) occurred during 42 walking sessions. Participants on average achieved 31.5 minutes of up time and 18.2 minutes of walk time with 456 steps in one EAW session. CONCLUSIONS Incorporation of EAW into standard of care AIR is possible. AIR with incorporated EAW has the potential to facilitate functional and motor recovery compared with AIR without EAW.
Collapse
Affiliation(s)
- Chung-Ying Tsai
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York; Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York.
| | - Andrew D Delgado
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - William J Weinrauch
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nicholas Manente
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Isaiah Levy
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Miguel X Escalon
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Thomas N Bryce
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ann M Spungen
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, New York; Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York
| |
Collapse
|
12
|
Morse LR, Biering-Soerensen F, Carbone LD, Cervinka T, Cirnigliaro CM, Johnston TE, Liu N, Troy KL, Weaver FM, Shuhart C, Craven BC. Bone Mineral Density Testing in Spinal Cord Injury: 2019 ISCD Official Position. J Clin Densitom 2019; 22:554-566. [PMID: 31501005 DOI: 10.1016/j.jocd.2019.07.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
Spinal cord injury (SCI) causes rapid osteoporosis that is most severe below the level of injury. More than half of those with motor complete SCI will experience an osteoporotic fracture at some point following their injury, with most fractures occurring at the distal femur and proximal tibia. These fractures have devastating consequences, including delayed union or nonunion, cellulitis, skin breakdown, lower extremity amputation, and premature death. Maintaining skeletal integrity and preventing fractures is imperative following SCI to fully benefit from future advances in paralysis cure research and robotic-exoskeletons, brain computer interfaces and other evolving technologies. Clinical care has been previously limited by the lack of consensus derived guidelines or standards regarding dual-energy X-ray absorptiometry-based diagnosis of osteoporosis, fracture risk prediction, or monitoring response to therapies. The International Society of Clinical Densitometry convened a task force to establish Official Positions for bone density assessment by dual-energy X-ray absorptiometry in individuals with SCI of traumatic or nontraumatic etiology. This task force conducted a series of systematic reviews to guide the development of evidence-based position statements that were reviewed by an expert panel at the 2019 Position Development Conference in Kuala Lumpur, Malaysia. The resulting the International Society of Clinical Densitometry Official Positions are intended to inform clinical care and guide the diagnosis of osteoporosis as well as fracture risk management of osteoporosis following SCI.
Collapse
Affiliation(s)
- Leslie R Morse
- Department of Rehabilitation Medicine, University of Minnesota School of Medicine, Minneapolis, MN, USA.
| | - Fin Biering-Soerensen
- Clinic for Spinal Cord Injuries, Neuroscience Centre, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Laura D Carbone
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA, USA; Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tomas Cervinka
- Department of Physiotherapy and Rehabilitation, Faculty of Health and Welfare, Satakunta University of Applied Sciences, Pori, Finland
| | - Christopher M Cirnigliaro
- Department of Veterans Affairs Rehabilitation Research & Development Service National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Therese E Johnston
- Department of Physical Therapy, Jefferson College of Rehabilitation Sciences, Thomas Jefferson University, Philadelphia, PA
| | - Nan Liu
- Department of Rehabilitation Medicine and Osteoporosis and Metabolic Bone Disease Center, Peking University Third Hospital, Beijing, China
| | - Karen L Troy
- Department of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Frances M Weaver
- Center of Innovation for Complex Chronic Healthcare (CINCCH), Health Services Research & Development, Department of Veterans Affairs, Hines VA Hospital, Hines, IL, USA; Department of Public Health Sciences, Stritch School of Medicine, Loyola University, Maywood, IL, USA
| | - Christopher Shuhart
- Swedish Bone Health and Osteoporosis Center, Swedish Medical Group, Seattle WA, USA
| | - Beverley C Craven
- Neural Engineering and Therapeutics Team, KITE Research Institute - University Health Network, Department of Medicine, University of Toronto, Toronto, Ontario Canada
| |
Collapse
|
13
|
International Standards for Neurological Classification of Spinal Cord Injury: factors influencing the frequency, completion and accuracy of documentation of neurology for patients with traumatic spinal cord injuries. EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY AND TRAUMATOLOGY 2019; 29:1639-1648. [PMID: 31324967 PMCID: PMC6851215 DOI: 10.1007/s00590-019-02502-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 07/15/2019] [Indexed: 11/23/2022]
Abstract
Introduction We aim to evaluate the effects of injury-related factors and clinician training grades on the frequency, completion and accuracy of International Standards for Neurological Classification of Spinal Cord Injury (ISNCSCI) charts in a tertiary care neurosurgery unit. Materials and methods We retrospectively analysed 96 ISNCSCI charts of 24 traumatic spinal cord-injured (SCI) patients and 26 controls (vertebral fracture but neurologically intact), written by 50 clinicians. Seven components of each ISNCSCI charts (motor scores, sensory scores, sensory levels, motor levels, neurological level of injury, SCI severity and AIS) were reviewed to evaluate the effect of injury factors and clinician grade on the completion and accuracy of the ISNCSCI components. Results The ISNCSCI chart was used 1.9 times on average during admission. The number of ISNCSCI assessments was significant in those with isolated spinal injuries (p = 0.03). The overall completion and accuracy rates of the assessed ISNCSCI chart components were 39% and 78.1%, respectively. Motor levels and AIS had the lowest completion rates. Motor levels and sensory levels had the lowest accuracy rates. The completion rate was higher in the charts of male patients, tetraplegic patients, and in patients with isolated spinal injuries. The junior clinicians had a significantly greater ISNCSCI chart completion rate than their seniors. However, the senior clinicians were more accurate in completing the ISNCSCI chart components. Conclusion The quality of ISNCSCI documentation remained poor regardless of the clinician training grade and injury factors. Clinicians should be educated on the ISNCSCI protocol and the importance of adequate documentation. Electronic supplementary material The online version of this article (10.1007/s00590-019-02502-7) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Gupta S, Jaiswal A, Norman K, DePaul V. Heterogeneity and Its Impact on Rehabilitation Outcomes and Interventions for Community Reintegration in People With Spinal Cord Injuries: An Integrative Review. Top Spinal Cord Inj Rehabil 2019; 25:164-185. [PMID: 31068748 DOI: 10.1310/sci2502-164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background: Various injury characteristics such as cause, level, severity, and time since injury divide individuals with spinal cord injury (SCI) into many subgroups. The heterogeneity among individuals' injuries and personal characteristics has significant implications for SCI rehabilitation practice, specifically directed toward community reintegration, which is a key goal of rehabilitation interventions for people with disabilities. Purpose: This study aims to summarize the evidence on attributes that make the SCI population heterogeneous, the impact of these attributes on community reintegration, and the implications of heterogeneity for rehabilitation interventions directed toward optimizing community reintegration. Methods: We used an integrative review approach to conduct this study. MEDLINE, PubMed, CINAHL, EMBASE, Google Scholar, and PsycINFO were searched from inception until May 2017. Out of 670 articles retrieved, 49 provided evidence on the impact of various attributes that make SCI heterogeneous on rehabilitation outcomes related to community reintegration. Results: An array of injury-related, personal, social, and environmental factors are associated with various rehabilitation outcomes that affect community reintegration of people with SCI. There is level 1 evidence that social support, self-efficacy, and self-esteem facilitate community reintegration among people with SCI while there is level 5 evidence that presence of psychological or medical complications decreases it. There is lack of clarity on the impact of injury-related factors on community reintegration. Conclusion: This integrative review found that social support and individuals' self-efficacy can improve community reintegration of people with SCI. However, evidence regarding the impact of injury characteristics on community reintegration is still underdeveloped. Approaches directed at community reintegration should involve components of psychosocial, physical, and vocational rehabilitation while considering personal and societal aspects of an individual's life.
Collapse
Affiliation(s)
- Shikha Gupta
- School of Rehabilitation Therapy, Queen's University, Kingston, Ontario, Canada
| | - Atul Jaiswal
- School of Rehabilitation Therapy, Queen's University, Kingston, Ontario, Canada
| | - Kathleen Norman
- School of Rehabilitation Therapy, Queen's University, Kingston, Ontario, Canada
| | - Vincent DePaul
- School of Rehabilitation Therapy, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
15
|
Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of Inactivity in Chronic Diseases: Evolutionary Insight and Pathophysiological Mechanisms. Physiol Rev 2017; 97:1351-1402. [PMID: 28814614 PMCID: PMC6347102 DOI: 10.1152/physrev.00019.2016] [Citation(s) in RCA: 376] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
This review proposes that physical inactivity could be considered a behavior selected by evolution for resting, and also selected to be reinforcing in life-threatening situations in which exercise would be dangerous. Underlying the notion are human twin studies and animal selective breeding studies, both of which provide indirect evidence for the existence of genes for physical inactivity. Approximately 86% of the 325 million in the United States (U.S.) population achieve less than the U.S. Government and World Health Organization guidelines for daily physical activity for health. Although underappreciated, physical inactivity is an actual contributing cause to at least 35 unhealthy conditions, including the majority of the 10 leading causes of death in the U.S. First, we introduce nine physical inactivity-related themes. Next, characteristics and models of physical inactivity are presented. Following next are individual examples of phenotypes, organ systems, and diseases that are impacted by physical inactivity, including behavior, central nervous system, cardiorespiratory fitness, metabolism, adipose tissue, skeletal muscle, bone, immunity, digestion, and cancer. Importantly, physical inactivity, itself, often plays an independent role as a direct cause of speeding the losses of cardiovascular and strength fitness, shortening of healthspan, and lowering of the age for the onset of the first chronic disease, which in turn decreases quality of life, increases health care costs, and accelerates mortality risk.
Collapse
Affiliation(s)
- Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Christian K Roberts
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - John P Thyfault
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Gregory N Ruegsegger
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri; Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri; Geriatrics, Research, Education and Clinical Center (GRECC), VA Greater Los Angeles Healthcare System, Los Angeles, California; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas; and Cardiovascular Division, Department of Medicine, University of Missouri, Columbia, Missouri
| |
Collapse
|
16
|
Lee YC, Brooks F, Sandler S, Yau YH, Selby M, Freeman B. Most Cited Publications in Cervical Spine Surgery. Int J Spine Surg 2017; 11:19. [PMID: 28765803 DOI: 10.14444/4019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PURPOSE The purpose of this study is to perform a citation analysis on the most frequently cited articles in the topic of cervical spine surgery and report on the top 100 most cited publication in this topic. METHODS We used the Thomson Reuters Web of Science to search citations of all articles from 1945 to 2015 relevant to cervical spine surgery and ranked them according to the number of citations. The 100 most cited articles that matched the search criteria were further analyzed by number of citations, first author, journal, year of publication, country and institution of origin. RESULTS The top 100 cited articles in the topic of cervical spine surgery were published from 1952-2011. The number of citations ranged from 106 times for the 100th paper to 1206 times for the top paper. The decade of 1990-1999 saw the most publications. The Journal of Spine published the most articles, followed by Journal of Bone and Joint Surgery America. Investigators from America authored the most papers and The University of California contributed the most publications. Cervical spine fusion was the most common topic published with 36 papers, followed by surgical technique and trauma. CONCLUSION This article identifies the 100 most cited articles in cervical spine surgery. It has provided insight to the history and development in cervical spine surgery and many of which have shaped the way we practice today.
Collapse
Affiliation(s)
- Yu Chao Lee
- Royal Adelaide Hospital, Adelaide, Australia
| | | | | | - Yun-Hom Yau
- Royal Adelaide Hospital, Adelaide, Australia
| | | | | |
Collapse
|
17
|
Pan Y, Dou WB, Wang YH, Luo HW, Ge YX, Yan SY, Xu Q, Tu YY, Xiao YQ, Wu Q, Zheng ZZ, Zhao HL. Non-concomitant cortical structural and functional alterations in sensorimotor areas following incomplete spinal cord injury. Neural Regen Res 2017; 12:2059-2066. [PMID: 29323046 PMCID: PMC5784355 DOI: 10.4103/1673-5374.221165] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Brain plasticity, including anatomical changes and functional reorganization, is the physiological basis of functional recovery after spinal cord injury (SCI). The correlation between brain anatomical changes and functional reorganization after SCI is unclear. This study aimed to explore whether alterations of cortical structure and network function are concomitant in sensorimotor areas after incomplete SCI. Eighteen patients with incomplete SCI (mean age 40.94 ± 14.10 years old; male:female, 7:11) and 18 healthy subjects (37.33 ± 11.79 years old; male:female, 7:11) were studied by resting state functional magnetic resonance imaging. Gray matter volume (GMV) and functional connectivity were used to evaluate cortical structure and network function, respectively. There was no significant alteration of GMV in sensorimotor areas in patients with incomplete SCI compared with healthy subjects. Intra-hemispheric functional connectivity between left primary somatosensory cortex (BA1) and left primary motor cortex (BA4), and left BA1 and left somatosensory association cortex (BA5) was decreased, as well as inter-hemispheric functional connectivity between left BA1 and right BA4, left BA1 and right BA5, and left BA4 and right BA5 in patients with SCI. Functional connectivity between both BA4 areas was also decreased. The decreased functional connectivity between the left BA1 and the right BA4 positively correlated with American Spinal Injury Association sensory score in SCI patients. The results indicate that alterations of cortical anatomical structure and network functional connectivity in sensorimotor areas were non-concomitant in patients with incomplete SCI, indicating the network functional changes in sensorimotor areas may not be dependent on anatomic structure. The strength of functional connectivity within sensorimotor areas could serve as a potential imaging biomarker for assessment and prediction of sensory function in patients with incomplete SCI. This trial was registered with the Chinese Clinical Trial Registry (registration number: ChiCTR-ROC-17013566).
Collapse
Affiliation(s)
- Yu Pan
- Department of Rehabilitation, Beijing Tsinghua Changgung Hospital; School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Wei-Bei Dou
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Yue-Heng Wang
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Hui-Wen Luo
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Yun-Xiang Ge
- Department of Electronic Engineering, Tsinghua University, Beijing, China
| | - Shu-Yu Yan
- Department of Rehabilitation, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Quan Xu
- Department of Rehabilitation, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yuan-Yuan Tu
- Department of Rehabilitation, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Yan-Qing Xiao
- Department of Rehabilitation, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Qiong Wu
- Department of Rehabilitation, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Zhuo-Zhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, Beijing, China
| | - Hong-Liang Zhao
- Department of Radiology, Beijing Tsinghua Changgung Hospital, Beijing, China
| |
Collapse
|
18
|
Galeiras R, Mourelo M, Pértega S, Lista A, Ferreiro ME, Salvador S, Montoto A, Rodríguez A. Rhabdomyolysis and acute kidney injury in patients with traumatic spinal cord injury. Indian J Crit Care Med 2016; 20:504-12. [PMID: 27688625 PMCID: PMC5027742 DOI: 10.4103/0972-5229.190370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: Patients with acute traumatic spinal cord injuries (SCIs) exhibit factors that, in other populations, have been associated with rhabdomyolysis. Purpose: The aim of the study is to determine the incidence of rhabdomyolysis in patients with acute traumatic SCI admitted to the Intensive Care Unit (ICU), as well as the development of secondary acute kidney injury and associated factors. Study Design and Setting: This was an observational, retrospective study. Patient Sample: All adult patients admitted to the ICU with acute traumatic SCI who presented rhabdomyolysis, diagnosed through creatine phosphokinase (CPK) levels >500 IU/L. Outcome Measures: Incidence of rhabdomyolysis and subsequent renal dysfunction was calculated. Materials and Methods: Data about demographic variables, comorbidity, rhabdomyolysis risk factors, and variables involving SCI, severity scores, and laboratory parameters were obtained from clinical records. Multivariate logistic regression was used to identify renal injury risk factors. Results: In 2006–2014, 200 patients with acute SCI were admitted to ICU. Of these, 103 had rhabdomyolysis (incidence = 51.5%; 95% confidence interval [CI]: 44.3%–58.7%). The most typical American Spinal Injury Association classification was A (70.3%). The injury severity score was 30.3 ± 12.1 and sequential organ failure assessment (SOFA) score was 5.6 ± 3.3 points. During their stay, 57 patients (55.3%; 95% CI: 45.2%–65.4%) presented renal dysfunction (creatinine ≥1.2 mg/dL). In the multivariate analysis, variables associated with renal dysfunction were creatinine at admission (odds ratio [OR] = 9.20; P = 0.006) and hemodynamic SOFA score the day following admission (OR = 1.33; P = 0.024). Creatinine was a better predictor of renal dysfunction than the peak CPK value during the rhabdomyolysis (area under the receiver operating characteristic curve: 0.91 vs. 0.63, respectively). Conclusions: Rhabdomyolysis is a frequent condition in patients with acute traumatic SCI admitted to the ICU, and renal dysfunction occurs in half of the cases. Creatinine values should be requested starting at the admission while neither the peak CPK values nor the hemodynamic SOFA scores could be used to properly discriminate between patients with and without renal dysfunction.
Collapse
Affiliation(s)
- Rita Galeiras
- Critical Care Unit, Complexo Hospitalario Universitario de A Coruña, University of A Coruña, CP: 15006 A Coruña, Spain
| | - Mónica Mourelo
- Critical Care Unit, Complexo Hospitalario Universitario de A Coruña, University of A Coruña, CP: 15006 A Coruña, Spain
| | - Sonia Pértega
- Clinical Epidemiology and Biostatistics Unit, Complexo Hospitalario Universitario de A Coruña, University of A Coruña, CP: 15006 A Coruña, Spain
| | - Amanda Lista
- Critical Care Unit, Complexo Hospitalario Universitario de A Coruña, University of A Coruña, CP: 15006 A Coruña, Spain
| | - M Elena Ferreiro
- Spinal Cord Injury Unit, Complexo Hospitalario Universitario de A Coruña, University of A Coruña. CP: 15006 A Coruña, Spain
| | - Sebastián Salvador
- Spinal Cord Injury Unit, Complexo Hospitalario Universitario de A Coruña, University of A Coruña. CP: 15006 A Coruña, Spain
| | - Antonio Montoto
- Spinal Cord Injury Unit, Complexo Hospitalario Universitario de A Coruña, University of A Coruña. CP: 15006 A Coruña, Spain
| | - Antonio Rodríguez
- Spinal Cord Injury Unit, Complexo Hospitalario Universitario de A Coruña, University of A Coruña. CP: 15006 A Coruña, Spain
| |
Collapse
|