1
|
Jafari N, Habashi MS, Hashemi A, Shirazi R, Tanideh N, Tamadon A. Application of bioactive glasses in various dental fields. Biomater Res 2022; 26:31. [PMID: 35794665 PMCID: PMC9258189 DOI: 10.1186/s40824-022-00274-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/09/2022] [Indexed: 12/16/2022] Open
Abstract
AbstractBioactive glasses are a group of bioceramic materials that have extensive clinical applications. Their properties such as high biocompatibility, antimicrobial features, and bioactivity in the internal environment of the body have made them useful biomaterials in various fields of medicine and dentistry. There is a great variation in the main composition of these glasses and some of them whose medical usage has been approved by the US Food and Drug Administration (FDA) are called Bioglass. Bioactive glasses have appropriate biocompatibility with the body and they are similar to bone hydroxyapatite in terms of calcium and phosphate contents. Bioactive glasses are applied in different branches of dentistry like periodontics, orthodontics, endodontics, oral and maxillofacial surgery, esthetic and restorative dentistry. Also, some dental and oral care products have bioactive glasses in their compositions. Bioactive glasses have been used as dental implants in the human body in order to repair and replace damaged bones. Other applications of bioactive glasses in dentistry include their usage in periodontal disease, root canal treatments, maxillofacial surgeries, dental restorations, air abrasions, dental adhesives, enamel remineralization, and dentin hypersensitivity. Since the use of bioactive glasses in dentistry is widespread, there is a need to find methods and extensive resources to supply the required bioactive glasses. Various techniques have been identified for the production of bioactive glasses, and marine sponges have recently been considered as a rich source of it. Marine sponges are widely available and many species have been identified around the world, including the Persian Gulf. Marine sponges, as the simplest group of animals, produce different bioactive compounds that are used in a wide range of medical sciences. Numerous studies have shown the anti-tumor, anti-viral, anti-inflammatory, and antibiotic effects of these compounds. Furthermore, some species of marine sponges due to the mineral contents of their structural skeletons, which are made of biosilica, have been used for extracting bioactive glasses.
Collapse
|
3
|
Possolli NM, da Silva DF, Vieira J, Maurmann N, Pranke P, Demétrio KB, Angioletto E, Montedo ORK, Arcaro S. Dissolution, bioactivity behavior, and cytotoxicity of 19.58Li 2 O·11.10ZrO 2 ·69.32SiO 2 glass-ceramic. J Biomed Mater Res B Appl Biomater 2021; 110:67-78. [PMID: 34121326 DOI: 10.1002/jbm.b.34889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/19/2021] [Accepted: 06/07/2021] [Indexed: 11/08/2022]
Abstract
Glass and bioactive glass-ceramic can be used in several applications. In bone growth where good bone/biomaterial adhesion was required, bioactive coatings for implants can improve bone formation. The glass and glass-ceramics of the LZS (Li2 O-ZrO2 -SiO2 ) system are very interesting because of their mechanical, electrical, and thermal properties. Very recently, their biological response in contact with human osteoblast has been evaluated. However, despite several initiatives, there are still no studies that systematically assess this system's bioactivity, dissolution, and cytotoxicity in vitro. This work aims to investigate the dissolution, bioactivity behavior, and cytotoxicity of LZS glass-ceramic. LZS glass-ceramics were produced from SiO2 , Li2 CO3, and ZrSiO4 by melting followed by quenching. The obtained glass frits were milled and uniaxially pressed and heat-treated at 800 and 900°C and submitted to physical-chemical, structural and mechanical characterization. Their dissolution behavior was studied in Tris-HCl, while bioactivity was performed in simulated solution body fluid (SBF). The cytotoxicity test was performed using glass-ceramic in direct contact with mesenchymal stem/stromal cells (SC) isolated from human exfoliated deciduous teeth. Structural and microstructural analyzes confirmed bioactivity. The results show that it was possible to produce bioactive glass-ceramic from LZS, proven by the formation of new calcium phosphate structures such as hydroxyapatite on the surface of the samples after exposure to SBF. The SC viability test performed indicated that the materials were not cytotoxic at 0.25, 0.5, and 1.0 mg/ml. The glass-ceramic system under study is very promising for a medicinal application that requires bioactivity and/or biocompatibility for bone regeneration.
Collapse
Affiliation(s)
- Natália Morelli Possolli
- Engenharia Química, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Daiara Floriano da Silva
- Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Jaqueline Vieira
- Programa de Pós-Graduação em Engenharia de Minas, Metalúrgica e de Materiais, Laboratório de Materiais Cerâmicos, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Laboratório de Hematologia e Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natasha Maurmann
- Laboratório de Hematologia e Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patricia Pranke
- Laboratório de Hematologia e Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Programa de Pós-Graduação em Ciências Biológicas: Fisiologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Instituto de Pesquisa com Células-tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ketner Bendo Demétrio
- Engenharia Química, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Elidio Angioletto
- Engenharia Química, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Oscar Rubem Klegues Montedo
- Engenharia Química, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| | - Sabrina Arcaro
- Engenharia Química, Universidade do Extremo Sul Catarinense, Criciúma, Brazil.,Grupo de Biomateriais e Materiais Nanoestruturados, Programa de Pós-graduação em Ciência e Engenharia de Materiais, Universidade do Extremo Sul Catarinense, Criciúma, Brazil
| |
Collapse
|
4
|
Skallevold HE, Rokaya D, Khurshid Z, Zafar MS. Bioactive Glass Applications in Dentistry. Int J Mol Sci 2019; 20:E5960. [PMID: 31783484 PMCID: PMC6928922 DOI: 10.3390/ijms20235960] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/22/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
At present, researchers in the field of biomaterials are focusing on the oral hard and soft tissue engineering with bioactive ingredients by activating body immune cells or different proteins of the body. By doing this natural ground substance, tissue component and long-lasting tissues grow. One of the current biomaterials is known as bioactive glass (BAG). The bioactive properties make BAG applicable to several clinical applications involving the regeneration of hard tissues in medicine and dentistry. In dentistry, its uses include dental restorative materials, mineralizing agents, as a coating material for dental implants, pulp capping, root canal treatment, and air-abrasion, and in medicine it has its applications from orthopedics to soft-tissue restoration. This review aims to provide an overview of promising and current uses of bioactive glasses in dentistry.
Collapse
Affiliation(s)
| | - Dinesh Rokaya
- Informetrics Research Group, Ton Duc Thang University, Ho Chi Minh City 7000, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 7000, Vietnam
| | - Zohaib Khurshid
- Prosthodontic and Dental Implantology Department, College of Dentistry, King Faisal University, Al-Hofuf, Al-Ahsa 31982, Saudi Arabia;
| | - Muhammad Sohail Zafar
- Department of Restorative Dentistry, College of Dentistry, Taibah University, Al Madinah, Al Munawwarah 41311, Saudi Arabia;
- Islamic International Dental College, Riphah International University Islamabad 44000, Pakistan
| |
Collapse
|