1
|
Bedenko SV, Lutsik IO, Matyushin AA, Polozkov SD, Shmakov VM, Modestov DG, Prikhodko VV, Arzhannikov AV. Fusion-fission hybrid reactor facility: power profiling. NUCLEAR ENERGY AND TECHNOLOGY 2023. [DOI: 10.3897/nucet.9.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
The current state of research in the field of nuclear and thermonuclear power aimed at creating power generation plants makes it possible to predict the further development of modern power industry in the direction hybrid reactor power plants. Such hybrid systems include a tokamak with reactor technologies, worked out in detail in Russia, and systems with an additional source of neutrons.
Power generation plants using tokamaks and accelerators with the required level of proton energy will be of exceptionally large size and power, which will postpone their construction on an industrial scale to the distant future. The ongoing research is aimed at the development of small generation and has the prospect of entering the field of energy use in a shorter period. The hybrid reactor facility under study consists of an axisymmetric assembly of fuel blocks of a high-temperature gas-cooled reactor and a linear plasma source of additional neutrons. The paper demonstrates the results of optimization plasma-physical, thermophysical and gas-dynamic studies, the purpose of which is to level the distortions of the power density field, which are formed in the volume of the multiplicating part of the facility due to the pulsed operation of the plasma source of D-T-neutrons. The studies on increasing the “brightness” of the source and modeling its operating modes were carried out using the DOL and PRIZMA programs. The thermophysical optimization and gas-dynamic calculations were performed using the verified SERPENT and FloEFD software codes. The calculations were made on a high-performance cluster of the Tomsk Polytechnic University.
Collapse
|
2
|
Arzhannikov A, Bedenko S, Prikhodko V, Shmakov V, Modestov D, Dolmatov OY, Vega-Carrillo H. A complementary study on the thermophysical and gas-dynamic characteristics of a hybrid fusion–fission reactor facility during operation. NUCLEAR ENGINEERING AND DESIGN 2022. [DOI: 10.1016/j.nucengdes.2022.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|