1
|
Zhuang S, Zhu K, Hu J, Wang J. Selective and effective adsorption of cesium ions by metal hexacyanoferrates (MHCF, M = Cu, Co, Ni) modified chitosan fibrous biosorbent. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155575. [PMID: 35490819 DOI: 10.1016/j.scitotenv.2022.155575] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/15/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Selective and effective adsorptive removal of radiocesium is of great importance in terms of nuclear waste management and environmental remediation, but is still challenging because of its radioactive and non-complexing nature. Herein, metal hexacyanoferrates (MHCF, M = Cu, Co, or Ni) modified fibrous chitosan was prepared by multiple sequential adsorption and self-assembly approach, and applied for the selective and effective adsorption of Cs+. The physically supported MHCF in chitosan fibers showed good crystallinity and stability, and the obtained fibrous composite has high specific surface area (18.2-29.4 m2 g-1). Moreover, MHCF crystals endowed the fibrous chitosan-based adsorbent with a high adsorption capacity and selectivity towards Cs+. Its adsorption kinetic and isotherm performance followed the pseudo second-order model and the Sips model. The qm value of three fibrous MHCF/chitosan (M = Cu, Co, or Ni) composites was 24.9-70.3 mg g-1. The fibrous CuHCF/chitosan composite had the highest qm among the three composites. In summary, the modified chitosan can selectively and effectively remove Cs+ from complicated aqueous solutions.
Collapse
Affiliation(s)
- Shuting Zhuang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Kunkun Zhu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| | - Jun Hu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
2
|
Ferdous Alam M, Begum ZA, Furusho Y, Hasegawa H, Rahman IM. Selective separation of radionuclides from environmental matrices using proprietary solid-phase extraction systems: A review. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
3
|
Ma W, Lv TT, Tang JH, Feng ML, Huang XY. Highly Efficient Uptake of Cs + by Robust Layered Metal-Organic Frameworks with a Distinctive Ion Exchange Mechanism. JACS AU 2022; 2:492-501. [PMID: 35252998 PMCID: PMC8889614 DOI: 10.1021/jacsau.1c00533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 05/07/2023]
Abstract
137Cs with strong radioactivity and a long half-life is highly hazardous to human health and the environment. The efficient removal of 137Cs from complex solutions is still challenging because of its high solubility and easy mobility and the influence of interfering ions. It is highly desirable to develop effective scavengers for radiocesium remediation. Here, the highly efficient uptake of Cs+ has been realized by two robust layered metal-organic frameworks (MOFs), namely [(CH3)2NH2]In(L)2·DMF·H2O (DMF = N,N'-dimethylformamide, H2L= H2aip (5-aminoisophthalic acid) for 1 and H2hip (5-hydroxyisophthalic acid) for 2). Remarkably, 1 and 2 hold excellent acid and alkali resistance and radiation stabilities. They exhibit fast kinetics, high capacities (q m Cs = 270.86 and 297.67 mg/g for 1 and 2, respectively), excellent selectivity for Cs+ uptake, and facile elution for the regeneration of materials. Particularly, 1 and 2 can achieve efficient Cs+/Sr2+ separation in a wide range of Sr/Cs molar ratios. For example, the separation factor (SF Cs/Sr) is up to ∼320 for 1. Moreover, the Cs+ uptake and elution mechanisms have been directly elucidated at the molecular level by an unprecedented single-crystal to single-crystal (SC-SC) structural transformation, which is attributed to the strong interactions between COO- functional groups and Cs+ ions, easily exchangeable [(CH3)2NH2]+, and flexible and robust anionic layer frameworks with open windows as "pockets". This work highlights layered MOFs for the highly efficient uptake of Cs+ ions in the field of radionuclide remediation.
Collapse
Affiliation(s)
- Wen Ma
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Tian-Tian Lv
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, P. R. China
| | - Jun-Hao Tang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Mei-Ling Feng
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian
Province Joint Innovation Key Laboratory of Fuel and Materials in
Clean Nuclear Energy System, Fujian Institute of Research on the Structure
of Matter, Chinese Academy of Sciences Fuzhou, 350002, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| | - Xiao-Ying Huang
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy
of Sciences, Fuzhou, Fujian 350002, P. R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R.
China
| |
Collapse
|
4
|
Da T, Chen T, Ma Y, Tong Z. Application of response surface method in the separation of radioactive material: a review. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Response Surface Method (RSM) is one of the most popular and powerful tools for experimental design and optimization. This paper first reviewed the research progress of RSM in the separation and recovery of various radioactive materials, and verified the application of RSM in adsorption isotherm analysis and thermodynamic calculation. The main advantage of RSM in radioactive material separation is the reduction in the number of experiments required, resulting in considerably less radioactive material consumption, secondary waste generation, workload and radiation dose, which is valuable for the research of radioactive material separation.
Collapse
Affiliation(s)
- Tianxing Da
- School of Nuclear Science and Engineering, North China Electric Power University , Beijing , 102206 , China
- Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University , Beijing , 102206 , China
| | - Tao Chen
- School of Nuclear Science and Engineering, North China Electric Power University , Beijing , 102206 , China
- Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University , Beijing , 102206 , China
| | - Yan Ma
- School of Nuclear Science and Engineering, North China Electric Power University , Beijing , 102206 , China
- Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University , Beijing , 102206 , China
| | - Zhenfeng Tong
- School of Nuclear Science and Engineering, North China Electric Power University , Beijing , 102206 , China
- Beijing Key Laboratory of Passive Safety Technology for Nuclear Energy, North China Electric Power University , Beijing , 102206 , China
| |
Collapse
|
5
|
Organic ligands for the development of adsorbents for Cs+ sequestration: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.11.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Zhang Z, Wu Y, Luo L, Li G, Li Y, Hu H. Application of disk tube reverse osmosis in wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148291. [PMID: 34146802 DOI: 10.1016/j.scitotenv.2021.148291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 05/26/2023]
Abstract
Disk tube reverse osmosis (DTRO), a modified module RO, has received growing attention in wastewater treatment. However, there is no comprehensive review of DTRO applications for wastewater treatment. In this study, China was found to be a major contributor to DTRO investigations. Specifically, 46 full- and 17 pilot-scale DTRO applications in China from the literature are summarized. The cumulative reported DTRO application scale in wastewater treatment amounted to ~16,500 m3/d by 2020 in China. Leachate and flue gas desulfurization (FGD) wastewater had the highest reported frequencies. Two-stage DTRO and "biological treatment + DTRO/two-stage DTRO" were the most reported processes in leachate treatment. Chemical oxygen demand (COD) and NH4+-N were removed at 99.00-99.95% and 98.00-99.98%, respectively, in full scales in leachate treatment. DTRO was primarily utilized in the concentration unit in hypersaline wastewater treatment (e.g., FGD wastewater). Total dissolved solids (TDS) were removed at 94.69-96.87% and 85.95-96.5% in the full- and pilot-scales, respectively. The overall operating costs were 17.50-60.61 CNY/m3 and 0.69-8.75 CNY/kgCOD for leachate treatment and 26.94-52.28 CNY/m3 and 0.71-3.61 CNY/kgTDS for FGD wastewater treatment. The major components of operating costs were chemical costs (13.09 CNY/m3, 1.63 CNY/kgCOD) for two-stage DTRO and electricity costs (19.73 CNY/m3, 1.67 CNY/kgCOD) for the "biological treatment + DTRO/two-stage DTRO" process. DTRO has shown promising prospects for wastewater treatment.
Collapse
Affiliation(s)
- Ziwei Zhang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China
| | - Yinhu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China.
| | - Liwei Luo
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China
| | - Guoliang Li
- Jinzheng Eco-technology Co., Ltd., 1 Ruida Rd, Laishan, Yantai 264003, China
| | - Yuebiao Li
- Jinzheng Eco-technology Co., Ltd., 1 Ruida Rd, Laishan, Yantai 264003, China
| | - Hongying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China; Beijing Laboratory for Environmental Frontier Technologies, Beijing 100084, China; Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
| |
Collapse
|
7
|
Jiao C, Wang G, Wang J, Gao Y, Hou H, Zhang M, Li Y. Effects of coprecipitation conditions on Cs+ removal, coprecipitate compositions and coprecipitate particle-size distribution in nickel potassium ferrocyanide systems. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07961-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Huo J, Yu G, Wang J. Selective adsorption of cesium (I) from water by Prussian blue analogues anchored on 3D reduced graphene oxide aerogel. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143286. [PMID: 33183809 DOI: 10.1016/j.scitotenv.2020.143286] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
In this paper, Prussian blue analogues (PBAs) anchored on 3D reduced graphene aerogel (denoted as 3D rGO/PBAs) was prepared, characterized and applied for adsorption of Cs(I) from aqueous solution. The results showed that 3D rGO/PBAs had high specific surface and good hydrophilic property, which was beneficial to the exposure of adsorptive sites and the transfer of adsorbates. The composite exhibited excellent adsorption performance towards Cs(I), and the maximum adsorption capacity was up to 204.9 mg/g, higher than most of reported values. The pseudo second-order kinetic model (R2 = 0.999) and the Langmuir isotherm model (R2 = 0.997) could fit the adsorption process well, suggesting the nature of homogeneous monolayer chemisorption. High distribution coefficients (kd) (2.8 × 104 to 5.8 × 104 mL/g), revealed that the composite had good selectivity. Ion-exchange, ion trapping and the complexation interaction might be involved in the process of cesium adsorption, in which ion-exchange may be dominant by characterization results.
Collapse
Affiliation(s)
- Jiangbo Huo
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China
| | - Guoce Yu
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
9
|
Zhuang S, Wang J. Poly amidoxime functionalized carbon nanotube as an efficient adsorbent for removal of uranium from aqueous solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Chen B, Chen D, Zhao X. Radioactive wastewater treatment with modified aromatic polyamide reverse osmosis membranes via quaternary ammonium cation grafting. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Kim HJ, Kim SJ, Hyeon S, Kang HH, Lee KY. Application of Desalination Membranes to Nuclide (Cs, Sr, and Co) Separation. ACS OMEGA 2020; 5:20261-20269. [PMID: 32832779 PMCID: PMC7439396 DOI: 10.1021/acsomega.0c02106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/17/2020] [Indexed: 05/04/2023]
Abstract
Desalination and nuclide separation, with cesium (Cs), strontium (Sr), and cobalt (Co), using commercial polymeric membranes are investigated under room temperature (298 K) to elucidate the permeation mechanism and possibility of applying commercial membranes to the separation of radioactive nuclides. The physicochemical properties of membranes are characterized by multiple techniques. The thickness of the selective layer and the boundary between the layers of membranes are observed by scanning electron microscopy. The chemical structure of selective and support layers is assessed by direct Fourier transform infrared/attenuated total reflection measurements on membrane samples. Thermogravimetric analysis demonstrates the composition comparison between membranes, which describes the relative amount of selective layers consisting of polyamide. The separation performance of polyamide-based commercial membranes is tested on simulated seawater (35,000 ppm of NaCl) and single- and multi-component aqueous nuclide solutions (10 ppm). Nanofiltration (NF) membranes exhibit a high flux of 160-210 L m-2 h-1 with low 31-64% rejection on the permeation of simulated seawater, while reverse osmosis (RO) membranes display a low flux of 13-22 L m-2 h-1 with nearly 80% rejection. This reveals RO membranes to be more effective for the rejecting nuclides (Cs, Sr, and Co) in dilute aqueous solutions, and NF membranes have advantage on high throughput. RO membranes reject above 93% for single components and even higher for mixed nuclide separation (>98%), and NF membranes permeate high flux above 230 L m-2 h-1. This study indicates that the desalination membranes (NF and RO) can be potential candidates for nuclide separation with combination.
Collapse
Affiliation(s)
- Hyung-Ju Kim
- Decommissioning
Technology Research Division, Korea Atomic
Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic
of Korea
| | - Sung-Jun Kim
- Decommissioning
Technology Research Division, Korea Atomic
Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic
of Korea
- Department
of Chemical and Biological Engineering, Korea University, 145
Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seungmi Hyeon
- Decommissioning
Technology Research Division, Korea Atomic
Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic
of Korea
| | - Han Hi Kang
- Decommissioning
Technology Research Division, Korea Atomic
Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic
of Korea
| | - Keun-Young Lee
- Decommissioning
Technology Research Division, Korea Atomic
Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 34057, Republic
of Korea
| |
Collapse
|
12
|
Removal of radionuclides from acidic solution by activated carbon impregnated with methyl- and carboxy-benzotriazoles. Sci Rep 2020; 10:11712. [PMID: 32678155 PMCID: PMC7366630 DOI: 10.1038/s41598-020-68645-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/29/2020] [Indexed: 11/12/2022] Open
Abstract
The removal efficiencies of metals commonly used to model the fate and transport of aqueous uranium and radioactive its daughter products, were observed on activated carbons impregnated with different benzotriazole derivatives. Acidic solutions containing U(VI), Sr(II), Eu(III), and Ce(III) were used to determine the immobilization potential of carboxybenzotriazole (CBT) and methylbenzotriazole (MeBT), where these derivatives were sorbed to different types of granular activated carbon (GAC). This sorption behavior can be predicted by Redlich–Peterson model. Flow-through column tests showed that the immobilization of uranium and some of its daughter products, significantly improves in response to oxidized GACs saturated with carboxybenzotrzole (CBT), which reached a maximum elimination for U(VI) at 260 BV, Eu(III) at 114 BV, Ce(III) at 126 BV, and Sr(II) at 100. MeBT significantly desorbed from GAC under acidic conditions. Trace amounts of CBT were observed in some column effluents, but this did not appear to alter the effectiveness of metal removal, regardless of the model radionuclide studied. These results suggest that enhanced immobilization of selected metals on GAC, can be achieved by impregnating oxidized activated carbon with carboxylated benzotriazoles, and that metal removal efficiency on this media, is related to their valence and ionic radius in acidic environments.
Collapse
|
13
|
Cesium separation from radioactive waste by extraction and adsorption based on crown ethers and calixarenes. NUCLEAR ENGINEERING AND TECHNOLOGY 2020. [DOI: 10.1016/j.net.2019.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Xing M, Zhuang S, Wang J. Efficient removal of Cs(I) from aqueous solution using graphene oxide. PROGRESS IN NUCLEAR ENERGY 2020. [DOI: 10.1016/j.pnucene.2019.103167] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
15
|
Performance and deterioration of forward osmosis membrane exposed to various dose of gamma-ray irradiation. ANN NUCL ENERGY 2020. [DOI: 10.1016/j.anucene.2019.106950] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
16
|
Zhuang S, Wang J. Removal of cesium ions using nickel hexacyanoferrates-loaded bacterial cellulose membrane as an effective adsorbent. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111682] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Liu X, Wu J, Hou LA, Wang J. Removal of Co, Sr and Cs ions from simulated radioactive wastewater by forward osmosis. CHEMOSPHERE 2019; 232:87-95. [PMID: 31152907 DOI: 10.1016/j.chemosphere.2019.05.210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 05/21/2023]
Abstract
The removal of Co, Sr and Cs ions form simulated radioactive wastewater using forward osmosis (FO) process was investigated. The effect of various factors on nuclide transport was examined, including membrane orientation, NaCl concentration, flow velocity, and the main factors were identified by correlation analysis. The mechanisms of nuclides transfer through membrane were explored. The results indicated that the active layer facing draw solution (AL-DS) had higher nuclide flux than AL-FS. At AL-FS mode, the highest flux of Co, Sr and Cs were only 1.54, 10.22 and 15.63 mg m-2 h-1 respectively by cellulose triacetate with embedded polyester screen support (CTA-ES) membrane. At AL-DS mode, the flux of Co and Cs increased when NaCl concentration and flow velocity increased. Convection, diffusion and electrostatic interactions were found to influence the nuclide transport all together. The Pearson correlation and partial correlation analysis identified that the diffusion coefficient of nuclides and reverse NaCl flux were the most important factors affecting nuclide flux through cellulose triacetate membrane. The water flux, NaCl concentration, flow velocity and partition coefficient were not the main affecting factors for nuclide flux.
Collapse
Affiliation(s)
- Xiaojing Liu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China
| | - Jinling Wu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China
| | - Li-An Hou
- Xi'an High Tech Inst, Xi'an, 710025, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
18
|
Hu Y, Guo X, Chen C, Wang J. Algal sorbent derived from Sargassum horneri for adsorption of cesium and strontium ions: equilibrium, kinetics, and mass transfer. Appl Microbiol Biotechnol 2019; 103:2833-2843. [PMID: 30693405 DOI: 10.1007/s00253-019-09619-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/29/2018] [Accepted: 01/03/2019] [Indexed: 12/13/2022]
Abstract
An algal sorbent derived from Sargassum horneri was prepared and used to adsorb cesium and strontium ions from aqueous solution. The phenomenological mathematical models associated to the predicted equilibrium isotherms were developed to determine the rate-limiting steps of the adsorption process. The maximum adsorption capacity of cesium ion and strontium ion was calculated to be 0.358 and 1.72 mmol g-1, respectively. The adsorption kinetics followed to the pseudo-second-order equation. It was found that adsorption of cesium or strontium ions onto the active sites of the biosorbent was the rate-limiting step. In addition, the external mass transfer and the internal mass transfer cannot be neglected for the adsorption of strontium ion based on the error analysis. The functional groups relevant to the adsorption were carboxyl and sulfate groups.
Collapse
Affiliation(s)
- Yuming Hu
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Xuan Guo
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Can Chen
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing, 100084, People's Republic of China.
- Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
19
|
Chen L, Bian X, Lu X. Removal of strontium from simulated low-level radioactive wastewater by nanofiltration. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:1733-1740. [PMID: 30500797 DOI: 10.2166/wst.2018.455] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The performance of different nanofiltration (NF) membranes for the treatment of strontium-containing radioactive wastewater was investigated. The effects of the initial strontium concentration, solution pH and complexation phenomena on strontium removal were described. For all the three membranes, the strontium rejection increased with decreasing initial strontium concentration. Meanwhile, the strontium rejection was minimum at the membrane isoelectric point (pH 5) primarily due to decreased co-ion electrostatic repulsion. In the presence of a complexing agent (polyacrylic acid or ethylenediamine tetraacetic acid disodium salt), the strontium rejection was generally higher than those obtained without a complexing agent for NF 270 and XN 45. Membrane cleaning experiments were also conducted to recover the performance of the membranes, which exhibited degradation during long-time filtration. The performance of the membranes after cleaning was close to that of the virgin membranes, especially for XN 45, whose recovery percentage was nearly 100%.
Collapse
Affiliation(s)
- Lifang Chen
- Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng, Jiangsu 224002, China
| | - Xiaokai Bian
- Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai 201800, China E-mail:
| | - Xiaofeng Lu
- Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai 201800, China E-mail:
| |
Collapse
|
20
|
Li J, Zhuang S, Wang L, Wang J. Treatment of Radioactive Wastewater from High-Temperature Gas-Cooled Reactor by Membrane System. NUCL TECHNOL 2018. [DOI: 10.1080/00295450.2018.1432838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Junfeng Li
- Tsinghua University, Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Beijing 100084, China
- Tsinghua University, Beijing Key Laboratory of Radioactive Waste Treatment, Beijing 100084, China
| | - Shuting Zhuang
- Tsinghua University, Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Beijing 100084, China
- Tsinghua University, Beijing Key Laboratory of Radioactive Waste Treatment, Beijing 100084, China
| | - Liang Wang
- Ministry of Environmental Protection, Nuclear and Radiation Safety Center, No. 54 Hongliannancun, Beijing 100082, China
| | - Jianlong Wang
- Tsinghua University, Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Beijing 100084, China
- Tsinghua University, Beijing Key Laboratory of Radioactive Waste Treatment, Beijing 100084, China
| |
Collapse
|
21
|
Removal of cobalt ions from simulated radioactive wastewater by vacuum membrane distillation. PROGRESS IN NUCLEAR ENERGY 2018. [DOI: 10.1016/j.pnucene.2017.11.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Zhuang S, Yin Y, Wang J. Removal of cobalt ions from aqueous solution using chitosan grafted with maleic acid by gamma radiation. NUCLEAR ENGINEERING AND TECHNOLOGY 2018. [DOI: 10.1016/j.net.2017.11.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|