1
|
Cui G, Wang Z, Liu H, Pang Z. Cytokine-mediated crosstalk between cancer stem cells and their inflammatory niche from the colorectal precancerous adenoma stage to the cancerous stage: Mechanisms and clinical implications. Front Immunol 2022; 13:1057181. [PMID: 36466926 PMCID: PMC9714270 DOI: 10.3389/fimmu.2022.1057181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/03/2022] [Indexed: 10/15/2023] Open
Abstract
The majority of colorectal cancers (CRCs) are thought to arise from precancerous adenomas. Upon exposure to diverse microenvironmental factors, precancerous stem cells (pCSCs) undergo complex genetic/molecular changes and gradually progress to form cancer stem cells (CSCs). Accumulative evidence suggests that the pCSC/CSC niche is an inflammatory dominated milieu that contains different cytokines that function as the key communicators between pCSCs/CSCs and their niche and have a decisive role in promoting CRC development, progression, and metastasis. In view of the importance and increasing data about cytokines in modulating pCSCs/CSC stemness properties and their significance in CRC, this review summarizes current new insights of cytokines, such as interleukin (IL)-4, IL-6, IL-8, IL-17A, IL-22, IL-23, IL-33 and interferon (IFN)-γ, involving in the modulation of pCSC/CSC properties and features in precancerous and cancerous lesions and discusses the possible mechanisms of adenoma progression to CRCs and their therapeutic potential.
Collapse
Affiliation(s)
- Guanglin Cui
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Faculty of Health Science, Nord University, Levanger, Norway
| | - Ziqi Wang
- College of Medical Imaging, Mudanjiang Medical University, Mudanjiang, China
| | - Hanzhe Liu
- School of Stomatology, Wuhan University, Wuhan, China
| | - Zhigang Pang
- Research Group of Gastrointestinal Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
2
|
Hao J, Dai X, Gao J, Li Y, Hou Z, Chang Z, Wang Y. Curcumin suppresses colorectal tumorigenesis via the Wnt/β-catenin signaling pathway by downregulating Axin2. Oncol Lett 2021; 21:186. [PMID: 33574925 PMCID: PMC7816292 DOI: 10.3892/ol.2021.12447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, with high incidence and mortality rates. Conventional therapies, including surgery, chemotherapy and radiation, are extensively used for the treatment of CRC. However, patients present with adverse effects, such as toxicity, hepatic injury and drug resistance. Thus, there is an urgent requirement to identify effective and safe therapy for CRC. Curcumin (CUR), a polyphenol substrate extracted from the rhizome of Curcuma longa, has been extensively studied for the treatment of CRC due to its high efficacy and fewer side effects. Previous studies have reported that several signaling pathways, such as NF-κB, Wnt/β-catenin, are involved in the antitumor effects of CUR in vitro. However, the effect and mechanisms in vivo are not yet fully understood. The present study aimed to determine the molecular mechanism of colorectal cancer in vivo. Reverse transcription-quantitative PCR, western blot and immunohistochemistry analyses were performed to determine the underlying molecular mechanism of curcumin's anti-cancer effect in azoxymethane-dextran sodium sulfate induced colorectal cancer. The results of the present study demonstrated that CUR suppressed tumorigenesis in AOM-DSS induced CRC in mice, and anticancer effects were exerted by suppressing the expression of pro-inflammatory cytokines, and downregulating Axin2 in the Wnt/β-catenin signaling pathway. Taken together, these results exhibit the potential in vivo mechanisms of the anticancer effects of CUR, and highlight Axin2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jiaxue Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xufen Dai
- Food and Drug Technology Research Center, Shaanxi Province Food and Drug Supervision and Inspection Research, Shaanxi Institute for Food and Drug Control, Xi'an, Shaanxi 710065, P.R. China
| | - Juan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yuexuan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Zhaoling Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Zhongman Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yuxin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| |
Collapse
|
3
|
Hashemi Doulabi MS, Ghaedi K, Ranji N, Khazaei Koohpar Z. rs1016860 of BCL2 3′UTR associates with hsa-miR-629-5p binding potential in breast cancer and gastric cancer in Isfahan population. Gene 2020; 738:144457. [DOI: 10.1016/j.gene.2020.144457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/29/2020] [Accepted: 02/06/2020] [Indexed: 12/20/2022]
|
4
|
Guo M, Dou J. Advances and perspectives of colorectal cancer stem cell vaccine. Biomed Pharmacother 2015; 76:107-20. [PMID: 26653557 DOI: 10.1016/j.biopha.2015.10.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/20/2015] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer is essentially an environmental and genetic disease featured by uncontrolled cell growth and the capability to invade other parts of the body by forming metastases, which inconvertibly cause great damage to tissues and organs. It has become one of the leading causes of cancer-related mortality in the developed countries such as United States, and approximately 1.2 million new cases are yearly diagnosed worldwide, with the death rate of more than 600,000 annually and incidence rates are increasing in most developing countries. Apart from the generally accepted theory that pathogenesis of colorectal cancer consists of genetic mutation of a certain target cell and diversifications in tumor microenvironment, the colorectal cancer stem cells (CCSCs) theory makes a different explanation, stating that among millions of colon cancer cells there is a specific and scanty cellular population which possess the capability of self-renewal, differentiation and strong oncogenicity, and is tightly responsible for drug resistance and tumor metastasis. Based on these characteristics, CCSCs are becoming a novel target cells both in the clinical and the basic studies, especially the study of CCSCs vaccines due to induced efficient immune response against CCSCs. This review provides an overview of CCSCs and preparation technics and targeting factors related to CCSCs vaccines in detail.
Collapse
Affiliation(s)
- Mei Guo
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China
| | - Jun Dou
- Department of Pathogenic Biology and Immunology of Medical School, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Abstract
Colorectal cancer stem cells (CSCs) were initially considered to be a subset of undifferentiated tumor cells with well-defined phenotypic and molecular markers. However, emerging evidence indicates instead that colorectal CSCs are heterogeneous subsets of tumor cells that are continuously reshaped by the dynamic interactions between genetic, epigenetic, and immune factors in the tumor microenvironment. Thus, the colorectal CSC phenotypes and responsiveness to therapy may not only be a tumor cell-intrinsic feature, but also depend on tumor-extrinsic microenvironmental factors. Furthermore, emerging evidence also implicates colorectal CSCs in potential immune evasion. Therefore, understanding how colorectal CSC-intrinsic mechanisms cooperate with the extrinsic microenvironmental factors to dynamically shape colorectal CSC resistance to chemotherapy and immunotherapy holds great promise for development of targeted CSC therapies of advanced human CRC.
Collapse
|
7
|
de Paula Carli A, de Abreu Vieira PM, Silva KTS, de Sá Cota RG, Carneiro CM, Castro-Borges W, de Andrade MHG. Bowman-Birk inhibitors, proteasome peptidase activities and colorectal pre neoplasias induced by 1,2-dimethylhydrazine in Swiss mice. Food Chem Toxicol 2012; 50:1405-12. [PMID: 22326805 DOI: 10.1016/j.fct.2012.01.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 12/24/2022]
Abstract
Bowman-Birk inhibitors (BBIs) are protein molecules containing two inhibitory domains for enzymes similar to trypsin and chymotrypsin. Interest in these inhibitors arose from their properties against the cancer chemically induced by 1,2-dimethylhydrazine (DMH). In this study the effect of two BBI preparations (from Glycine max and Macrotyloma axillare) were evaluated for the prevention of colorectal neoplasia induced by intraperitoneal injections of DMH, given at a dose of 30 mg/kg, during 12 weeks. Mice treated with DMH presented histopathological alterations consistent with tumor development, augmented CD44 expression and increased proteasome peptidase activities. Lysosomal fractions, obtained from the intestines, were chromatographed in a Sepharose-BBI column and increased activity for trypsin and chymotrypsin-like proteases recovered from DMH-treated animals. In parallel, mice treated for eight weeks with BBIs showed a decrease in the chymotrypsin and trypsin-like proteasome activities compared to animals fed on normal diet. For the groups receiving simultaneous treatment with DMH and BBIs, dysplasic lesions were not observed and proteasome peptidase activities were similar to the control group after the 24th week. These results suggest that the mechanism by which BBIs could prevent the appearance of pre neoplastic lesions is associated with inhibition of both the lysosomal and proteasome-dependent proteolytic pathways.
Collapse
|
8
|
Upper gastrointestinal carcinogenesis: H. pylori and stem cell cross-talk. J Surg Res 2010; 166:255-64. [PMID: 20452613 DOI: 10.1016/j.jss.2010.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/29/2010] [Accepted: 02/09/2010] [Indexed: 02/06/2023]
Abstract
Chronic inflammation of the gastric epithelium has been associated with the pathogenesis of gastric cancer, as it was postulated by Corea's model of gastric carcinogenesis. Helicobacter pylori (Hp) regulates this inflammatory process and promotes gastric carcinogenesis through induction of gene mutations and protein modulation. Recent data raise the cancer stem cell hypothesis, which implies a central role of multipotent cancer cells in oncogenesis of various solid tumors. This review provides a synopsis of gastric cancer initiation and promotion through Hp and stem cell signaling pathways. The expanding research field of Hp-related cancer stem cell biology may offer novel implications for future treatment of upper gastrointestinal cancer.
Collapse
|