1
|
An integral perspective of canonical cigarette and e-cigarette-related cardiovascular toxicity based on the adverse outcome pathway framework. J Adv Res 2022:S2090-1232(22)00193-X. [PMID: 35998874 DOI: 10.1016/j.jare.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/29/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Nowadays, cigarette smoking remains the leading cause of chronic disease and premature death, especially cardiovascular disease. As an emerging tobacco product, e-cigarettes have been advocated as alternatives to canonical cigarettes, and thus may be an aid to promote smoking cessation. However, recent studies indicated that e-cigarettes should not be completely harmless to the cardiovascular system. AIM OF REVIEW This review aimed to build up an integral perspective of cigarettes and e-cigarettes-related cardiovascular toxicity. KEY SCIENTIFIC CONCEPTS OF REVIEW This review adopted the adverse outcome pathway (AOP) framework as a pivotal tool and aimed to elucidate the association between the molecular initiating events (MIEs) induced by cigarette and e-cigarette exposure to the cardiovascular adverse outcome. Since the excessive generation of reactive oxygen species (ROS) has been widely approved to play a critical role in cigarette smoke-related CVD and may also be involved in e-cigarette-induced toxic effects, the ROS overproduction and subsequent oxidative stress are regarded as essential parts of this framework. As far as we know, this should be the first AOP framework focusing on cigarette and e-cigarette-related cardiovascular toxicity, and we hope our work to be a guide in exploring the biomarkers and novel therapies for cardiovascular injury.
Collapse
|
2
|
Poussin C, Laurent A, Kondylis A, Marescotti D, van der Toorn M, Guedj E, Goedertier D, Acali S, Pak C, Dulize R, Baumer K, Peric D, Maluenda E, Bornand D, Suarez IG, Schlage WK, Ivanov NV, Peitsch MC, Hoeng J. In vitro systems toxicology-based assessment of the potential modified risk tobacco product CHTP 1.2 for vascular inflammation- and cytotoxicity-associated mechanisms promoting adhesion of monocytic cells to human coronary arterial endothelial cells. Food Chem Toxicol 2018; 120:390-406. [PMID: 30026091 DOI: 10.1016/j.fct.2018.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/24/2022]
Abstract
Cigarette smoking causes cardiovascular diseases. Heating tobacco instead of burning it reduces the amount of toxic compounds in the aerosol and may exert a reduced impact on health compared with cigarette smoke. Aqueous extract from the aerosol of a potential modified risk tobacco product, the Carbon Heated Tobacco Product (CHTP) 1.2, was compared in vitro with aqueous extract from the smoke of a 3R4F reference cigarette for its impact on the adhesion of monocytic cells to artery endothelial cells. Human coronary artery endothelial cells (HCAEC) were treated for 4 h with conditioned media from human monocytic Mono Mac 6 (MM6) cells exposed to CHTP1.2 or 3R4F extracts for 2 h or directly with those extracts freshly generated. In vitro monocyte-endothelial cell adhesion was measured concomitantly with inflammatory, oxidative stress, cytotoxicity, and death markers. Furthermore, transcriptomics analyses enabled to quantify the level of perturbation in HCAECs, and provide biological interpretation for the underlying molecular changes following exposure to 3R4F or CHTP1.2 extract. Our systems toxicology study demonstrated that approximately 10-15-fold higher concentrations of the CHTP 1.2 aerosol extract were needed to elicit similar effects as the 3R4F smoke extract on cardiovascular disease-relevant inflammation and cytotoxicity-related mechanisms and markers investigated in vitro.
Collapse
Affiliation(s)
- Carine Poussin
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland.
| | - Alexandra Laurent
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Diego Marescotti
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Marco van der Toorn
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Didier Goedertier
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stefano Acali
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Claudius Pak
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Rémi Dulize
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Karine Baumer
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Dariusz Peric
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Elodie Maluenda
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - David Bornand
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Ignacio Gonzalez Suarez
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- Biology Consultant, Max-Baermann-Str. 21, 51429 Bergisch Gladbach, Germany
| | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Part of Philip Morris International Group of Companies, Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
3
|
Poussin C, Laurent A, Peitsch MC, Hoeng J, De Leon H. Systems toxicology-based assessment of the candidate modified risk tobacco product THS2.2 for the adhesion of monocytic cells to human coronary arterial endothelial cells. Toxicology 2016; 339:73-86. [PMID: 26655683 DOI: 10.1016/j.tox.2015.11.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/26/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
Alterations of endothelial adhesive properties by cigarette smoke (CS) can progressively favor the development of atherosclerosis which may cause cardiovascular disorders. Modified risk tobacco products (MRTPs) are tobacco products developed to reduce smoking-related risks. A systems biology/toxicology approach combined with a functional in vitro adhesion assay was used to assess the impact of a candidate heat-not-burn technology-based MRTP, Tobacco Heating System (THS) 2.2, on the adhesion of monocytic cells to human coronary arterial endothelial cells (HCAECs) compared with a reference cigarette (3R4F). HCAECs were treated for 4h with conditioned media of human monocytic Mono Mac 6 (MM6) cells preincubated with low or high concentrations of aqueous extracts from THS2.2 aerosol or 3R4F smoke for 2h (indirect treatment), unconditioned media (direct treatment), or fresh aqueous aerosol/smoke extracts (fresh direct treatment). Functional and molecular investigations revealed that aqueous 3R4F smoke extract promoted the adhesion of MM6 cells to HCAECs via distinct direct and indirect concentration-dependent mechanisms. Using the same approach, we identified significantly reduced effects of aqueous THS2.2 aerosol extract on MM6 cell-HCAEC adhesion, and reduced molecular changes in endothelial and monocytic cells. Ten- and 20-fold increased concentrations of aqueous THS2.2 aerosol extract were necessary to elicit similar effects to those measured with 3R4F in both fresh direct and indirect exposure modalities, respectively. Our systems toxicology study demonstrated reduced effects of an aqueous aerosol extract from the candidate MRTP, THS2.2, using the adhesion of monocytic cells to human coronary endothelial cells as a surrogate pathophysiologically relevant event in atherogenesis.
Collapse
Affiliation(s)
- Carine Poussin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Alexandra Laurent
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Hector De Leon
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| |
Collapse
|
4
|
Poussin C, Laurent A, Peitsch MC, Hoeng J, De Leon H. Systems Biology Reveals Cigarette Smoke-Induced Concentration-Dependent Direct and Indirect Mechanisms That Promote Monocyte–Endothelial Cell Adhesion. Toxicol Sci 2015; 147:370-85. [DOI: 10.1093/toxsci/kfv137] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
5
|
Poussin C, Gallitz I, Schlage WK, Steffen Y, Stolle K, Lebrun S, Hoeng J, Peitsch MC, Lietz M. Mechanism of an indirect effect of aqueous cigarette smoke extract on the adhesion of monocytic cells to endothelial cells in an in vitro assay revealed by transcriptomics analysis. Toxicol In Vitro 2014; 28:896-908. [PMID: 24747719 DOI: 10.1016/j.tiv.2014.03.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 02/05/2014] [Accepted: 03/11/2014] [Indexed: 02/07/2023]
Abstract
The adhesion of monocytic cells to the "dysfunctional" endothelium constitutes a critical step in the initiation of atherosclerosis. Cigarette smoke (CS) has been shown to contribute to this process, the complex mechanism of which still needs to be unraveled. We developed an in vitro adhesion assay to investigate the CS-induced adhesion of monocytic MM6 cells to human umbilical vein endothelial cells (HUVECs) following exposure to an aqueous CS extract (smoke-bubbled phosphate buffered saline: sbPBS), reasoning that in vivo monocytes and endothelial cells are exposed primarily to soluble constituents from inhaled CS absorbed through the lung alveolar wall. MM6 cell adhesion was increased exclusively by the conditioned medium from sbPBS-exposed MM6 cells, not by direct sbPBS exposure of the HUVECs within a range of sbPBS doses. Using a transcriptomics approach followed by confirmation experiments, we identified different exposure effects on both cell types and a key mechanism by which sbPBS promoted the adhesion of MM6 cells to HUVECs. While sbPBS provoked a strong oxidative stress response in both cell types, the expression of E-selectin, VCAM-1 and ICAM-1, responsible for the adhesion of MM6 cells to HUVECs, was induced in the latter through a proinflammatory paracrine effect. We confirmed that this effect was driven mainly by TNFα produced by MM6 cells exposed to sbPBS. In conclusion, we have elucidated an indirect mechanism by which sbPBS increases the adhesion of monocytic cells to endothelial cells in this in vitro assay that was designed for tobacco product risk assessment while mimicking the in vivo exposure conditions as closely as possible.
Collapse
Affiliation(s)
- Carine Poussin
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland.
| | - Inka Gallitz
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | - Walter K Schlage
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | - Yvonne Steffen
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Katrin Stolle
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| | - Stefan Lebrun
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Manual C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, 2000 Neuchâtel, Switzerland
| | - Michael Lietz
- Philip Morris International R&D, Philip Morris Research Laboratories GmbH, Fuggerstrasse 3, 51149 Cologne, Germany
| |
Collapse
|
6
|
Smith LA, Paszkiewicz GM, Hutson AD, Pauly JL. Inflammatory response of lung macrophages and epithelial cells to tobacco smoke: a literature review of ex vivo investigations. Immunol Res 2010; 46:94-126. [PMID: 20094822 DOI: 10.1007/s12026-009-8133-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chronic inflammation contributes to the initiation and progression of tumors and tobacco smoke-associated inflammation is associated with malignant and certain non-neoplastic lung diseases. Reported herein are the results of an interpretative synthesis review of the literature assessing the inflammatory response of lung macrophages (MPhi) and epithelial cells to tobacco smoke as measured ex vivo. Papers were retrieved using Boolean operations from PubMed and Scopus. Many writings reported the results of assays of human MPhi from fresh surgically excised human lung tissue, bronchoalveolar lavage, activated blood monocytes, long-term cell lines and MPhi from different laboratory animals. Some publications reported the findings of comparative studies of lung MPhi freshly isolated from the lungs of smokers and non-smokers. Other papers described the effect of tobacco smoke on lung epithelial cells. Most investigators quantified the response of the target cells to tobacco smoke by measuring the production of pro-inflammatory mediators; these included chemokines, cytokines, reactive oxygen species and enzymes. Investigators have reported conflicting observations of the response of human and animal MPhi and epithelial cells to tobacco smoke. The spectrum included papers describing robust production of various inflammatory mediators, significant reduction of a pro-inflammatory response to a known stimulant and overt cytotoxicity. This literature review documents that there exists no consensus, and no emerging trend line, of the reproducible effect(s) of cigarette smoke. This discrepancy reflects the absence of standardized protocols for collecting, processing and bioassaying the smoke, a highly complex aerosol, and identifies the need for establishing collaborative research schemes.
Collapse
Affiliation(s)
- Lauren A Smith
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
7
|
Wang Y, Wang L, Ai X, Zhao J, Hao X, Lu Y, Qiao Z. Nicotine could augment adhesion molecule expression in human endothelial cells through macrophages secreting TNF-alpha, IL-1beta. Int Immunopharmacol 2005; 4:1675-86. [PMID: 15454119 DOI: 10.1016/j.intimp.2004.07.028] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 06/22/2004] [Accepted: 07/26/2004] [Indexed: 01/19/2023]
Abstract
Nicotine, the major immunomodulatory components of cigarette smoking, is among the leading risk factors in atherosclerosis and various other diseases. The subject of this study is to observe how nicotine affects the function of macrophages and vascular endothelial cells. The changes of nicotine on releasing of cytokines from Ana-1 were detected by radio-immunoassay (RIA) or enzyme-link immunosorbent assay (ELISA). The adhesion of monocytes to human umbilical vein endothelial cells (HUVECs) with Ana-1 supernatant-activated was evaluated through adhesion experiments. ELISA and RT-PCR methods examined expression of soluble adhesion molecular protein and their mRNA. Which cytokines in Ana-1 supernatant affecting HUVECs ability to express adhesion molecular were tested by adhesion blockade analysis and ELISA. The results showed TNF-alpha, IL-1beta could reach the peak with 0.06mM nicotine treated for 24 and 12 h on Ana-1, respectively, but IL-8 and IFN-gamma had no significant alter. Adhesion experiments proved treatment of HUVECs with supernatant of Ana-1 for 24 h obviously augmented the adhesion of monocytes to HUVECs. ELISA and PCR demonstrated expression of soluble intracellular adhesion molecule-1 protein (sICAM-1) increased sharply at 24 h, while soluble vascular cell adhesion molecule-1 protein (sVCAM-1) and soluble endothelial selectin protein (sE-selectin) rose at 9 h; ICAM-1, VCAM-1 and E-selectin mRNA had a similar tendency. Treatment of HUVECs with anti-TNF-alpha, anti-IL-1beta antibodies pre-neutralized supernatant of Ana-1 could block monocytes adhesion. In conclusion, our findings suggest that nicotine could augment macrophages releasing TNF-alpha and IL-1beta, furthermore TNF-alpha and IL-1beta could up-regulate the expression of adhesion molecule and increase adhesion of monocytes to HUVECs. These might be one of the reasons that leaded to endothelial dysfunction.
Collapse
Affiliation(s)
- Yajing Wang
- School of Medicine, Shanghai Jiao Tong University, Huashanlu 1954, Shanghai 200030, P.R. China
| | | | | | | | | | | | | |
Collapse
|
8
|
Chen HW, Chien ML, Chaung YH, Lii CK, Wang TS. Extracts from cigarette smoke induce DNA damage and cell adhesion molecule expression through different pathways. Chem Biol Interact 2004; 150:233-41. [PMID: 15560890 DOI: 10.1016/j.cbi.2004.09.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Revised: 09/20/2004] [Accepted: 09/20/2004] [Indexed: 10/26/2022]
Abstract
Cigarette smoke is a major risk factor for human diseases, such as lung cancer and atherosclerosis. The present study was undertaken to investigate the effect of non-fractionated water-soluble cigarette smoke extract (NFWS CSE) on DNA damage and cellular adhesion molecule expression in human umbilical vein endothelial cells (HUVECs). DNA damage and the surface expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin were determined by the use of the comet assay and flow cytometry, respectively. NFWS CSE-induced DNA damage in a dose-dependent manner during a 2 h exposure. Pretreatment with ascorbic acid or alpha-tocopherol completely inhibited the NFWS CSE-induced DNA damage. NFWS CSE exposure also up-regulated the surface expression of ICAM-1 and E-selectin in HUVECs. Pretreatment with ascorbic acid or alpha-tocopherol had no effect on NFWS CSE-induced E-selectin and ICAM-1 expression. In contrast, the non-antioxidant metal chelator 1,10-phenanthroline partially suppressed the surface expression of ICAM-1 and E-selectin. These results suggest that NFWS CSE exposure induces both DNA damage and the surface expression of adhesion molecules in HUVECs. However, the molecular mechanism of these effects may be through different pathways: reactive oxygen species are involved in NFWS CSE-induced DNA damage but have little relation to NFWS CSE-induced E-selectin and ICAM-1 expression.
Collapse
Affiliation(s)
- Haw-Wen Chen
- Department of Nutrition, Chung Shan Medical University, Taichung 402, Taiwan
| | | | | | | | | |
Collapse
|
9
|
van der Vaart H, Postma DS, Timens W, ten Hacken NHT. Acute effects of cigarette smoke on inflammation and oxidative stress: a review. Thorax 2004; 59:713-21. [PMID: 15282395 PMCID: PMC1747102 DOI: 10.1136/thx.2003.012468] [Citation(s) in RCA: 480] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Compared with the effects of chronic smoke exposure on lung function and airway inflammation, there are few data on the acute effects of smoking. A review of the literature identified 123 studies investigating the acute effects of cigarette smoking on inflammation and oxidative stress in human, animal, and in vitro models. An acute smoking model is a relatively easy and sensitive method of investigating the specific effects of cigarette smoke on oxidative stress and inflammation. Acute smoke exposure can result in tissue damage, as suggested by increased products of lipid peroxidation and degradation products of extracellular matrix proteins. Acute cigarette smoke has a suppressive effect on the number of eosinophils and several inflammatory cytokines, possibly due to the anti-inflammatory effect of carbon monoxide. An acute smoking model can supplement other ways of studying the effects of smoking and is an as yet underinvestigated method for intervention studies in smoking related diseases.
Collapse
Affiliation(s)
- H van der Vaart
- Department of Pulmonology, University Hospital Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| | | | | | | |
Collapse
|