1
|
Kastella F, Salim FN, Goenawan H, Lesmana R, Maliza R, Syaidah R, Rosdianto AM, Tarawan VM, Setiawan. Effect of Low Protein Diet on Bone Structure of Young Wistar Mice. Pak J Biol Sci 2024; 27:113-118. [PMID: 38686732 DOI: 10.3923/pjbs.2024.113.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
<b>Background and Objective:</b> Malnutrition and stunting are major unresolved problems in Indonesia. Protein deficiency can cause stunted growth, as well as make physical and cognitive abilities cannot reach their maximum potential. During childhood the need for protein must be fulfilled so that the peak of bone formation during adolescence can be perfect. In malnourished children, a low protein diet will lead to thinning of the bone cortex. Due to the high rate of stunting and malnutrition in children due to protein deficiency, a study was conducted on the effects of feeding low protein diet on rat bones. <b>Materials and Methods:</b> Male Wistar rats (n = 10) at 6-8 weeks old (body weight around 250 g), control groups were fed a normal chow diet and low protein diet groups were given low protein chow diet (protein 5%) for 18 weeks, then the rats were sacrificed and the femoral bones were isolated. Body weight, femur weight, femur length were checked and bone density was examined using X-ray. <b>Results:</b> The body proportions of the low protein group rats were smaller and thinner than those of the control group. This difference is supported by the significant weight loss starting from the sixth week after low protein feeding. There are significant differences in body weight and femur weight between the control and low protein diet groups. Bone density decreases significantly in low protein diet group. Macroscopically, the femur length of the low protein group was shorter than the control group, however the femur length did not show significant differences statistically between the two groups. <b>Conclusion:</b> A low protein diet decreased the body weight of the rats, also causing impaired bone growth characterized by decreasing femur weight. The low protein diet also caused osteoporosis in the bones.
Collapse
|
2
|
de Quadros VP, Tobar N, Viana LR, Dos Santos RW, Kiyataka PHM, Gomes-Marcondes MCC. The 17β-oestradiol treatment minimizes the adverse effects of protein restriction on bone parameters in ovariectomized Wistar rats: Relevance to osteoporosis and the menopause. Bone Joint Res 2020; 8:573-581. [PMID: 31934328 PMCID: PMC6946913 DOI: 10.1302/2046-3758.812.bjr-2018-0259.r2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Objectives Insufficient protein ingestion may affect muscle and bone mass, increasing the risk of osteoporotic fractures in the elderly, and especially in postmenopausal women. We evaluated how a low-protein diet affects bone parameters under gonadal hormone deficiency and the improvement led by hormone replacement therapy (HRT) with 17β-oestradiol. Methods Female Wistar rats were divided into control (C), ovariectomized (OVX), and 17β-oestradiol-treated ovariectomized (OVX-HRT) groups, which were fed a control or an isocaloric low-protein diet (LP; 6.6% protein; seven animals per group). Morphometric, serum, and body composition parameters were assessed, as well as bone parameters, mechanical resistance, and mineralogy. Results The results showed that protein restriction negatively affected body chemical composition and bone metabolism by the sex hormone deficiency condition in the OVX group. The association between undernutrition and hormone deficiency led to bone and muscle mass loss and increased the fragility of the bone (as well as decreasing relative femoral weight, bone mineral density, femoral elasticity, peak stress, and stress at offset yield). Although protein restriction induced more severe adverse effects compared with the controls, the combination with HRT showed an improvement in minimizing these damaging effects, as it was seen that HRT had some efficacy in maintaining muscle and bone mass, preserving the bone resistance and minimizing some deleterious processes during the menopause. Conclusion Protein restriction has adverse effects on metabolism, leading to more severe menopausal symptoms, and HRT could minimize these effects. Therefore, special attention should be given to a balanced diet during menopause and HRT.Cite this article: Bone Joint Res 2019;8:573-581.
Collapse
Affiliation(s)
- Victoria P de Quadros
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natalia Tobar
- Nuclear Medicine Service, the Clinical Hospital of UNICAMP, Campinas, Brazil
| | - Lais R Viana
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| | - Rogerio W Dos Santos
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| | - Paulo H M Kiyataka
- Packaging Technology Centre (Cetea) from the Institute of Food Technology (ITAL) of Campinas, Campinas, Brazil
| | - Maria C C Gomes-Marcondes
- Laboratory of Nutrition and Cancer, Department of Structural and Functional Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
3
|
Cheng H, Xiong W, Fang Z, Guan H, Wu W, Li Y, Zhang Y, Alvarez MM, Gao B, Huo K, Xu J, Xu N, Zhang C, Fu J, Khademhosseini A, Li F. Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities. Acta Biomater 2016; 31:388-400. [PMID: 26612413 DOI: 10.1016/j.actbio.2015.11.046] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 01/06/2023]
Abstract
Two frequent problems are associated with the titanium surfaces of bone/dental implants: lack of native tissue integration and associated infection. These problems have prompted a significant body of research regarding the modification of these surfaces. The present study describes a hydrothermal treatment for the fabrication of strontium (Sr) and silver (Ag) loaded nanotubular structures with different tube diameters on titanium surfaces. The Sr loading from a Sr(OH)2 solution was regulated by the size of the inner diameter of the titanium nanotubes (NT) (30nm or 80nm, formed at 10V or 40V, respectively). The quantity of Ag was adjusted by immersing the samples in 1.5 or 2.0M AgNO3 solutions. Sr and Ag were released in a controllable and prolonged matter from the NT-Ag.Sr samples, with negligible cytotoxicity. Prominent antibacterial activity was observed due to the release of Ag. Sr incorporation enhanced the initial cell adhesion, migration, and proliferation of preosteoblast MC3T3-E1 cells. Sr release also up-regulated the expression of osteogenic genes and induced mineralization, as suggested by the presence of more mineralized calcium nodules in cells cultured on NT-Ag.Sr surfaces. In vivo experiments showed that the Sr-loaded samples accelerated the formation of new bone in both osteoporosis and bone defect models, as confirmed by X-ray, Micro-CT evaluation, and histomorphometric analysis of rats implanted with NT-Ag.Sr samples. The antibacterial activity and outstanding osteogenic properties of NT-Ag.Sr samples highlight their excellent potential for use in clinical applications. STATEMENT OF SIGNIFICANCE Two frequent problems associated with Ti surfaces, widely used in orthopedic and dental arenas, are their lack of native tissue integration and risk of infection. We describe a novel approach for the fabrication of strontium (Sr) and silver (Ag) loaded nanotubular structures on titanium surfaces. A relevant aspect of this work is the demonstration of long-lasting and controllable Ag release, leading to excellent antibacterial and anti-adherent properties against methicillin-resistant Staphylococcus aureus (MRSA), and Gram-negative bacteria such as Escherichia coli. The extended release of Sr accelerates the filling of bone defects by improving the repair of damaged cortical bone and increasing trabecular bone microarchitecture. Our results highlight the potential of Sr and Ag loaded nanotubular structures for use in clinical applications.
Collapse
|
4
|
Systemic treatment with strontium ranelate accelerates the filling of a bone defect and improves the material level properties of the healing bone. BIOMED RESEARCH INTERNATIONAL 2014; 2014:549785. [PMID: 25243150 PMCID: PMC4163478 DOI: 10.1155/2014/549785] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/22/2014] [Indexed: 12/22/2022]
Abstract
Rapid bone defect filling with normal bone is a challenge in orthopaedics and dentistry. Strontium ranelate (SrRan) has been shown to in vitro decrease bone resorption and increase bone formation, and represents a potential agent with the capacity to accelerate bone defect filling. In this study, bone tibial defects of 2.5 mm in diameter were created in 6-month-old female rats orally fed SrRan (625 mg/kg/d; 5/7 days) or vehicle for 4, 8, or 12 weeks (10 rats per group per time point) from the time of surgery. Tibias were removed. Micro-architecture was determined by micro-computed tomography (µCT) and material level properties by nanoindentation analysis. µCT analysis showed that SrRan administration significantly improved microarchitecture of trabecular bone growing into the defect after 8 and 12 weeks of treatment compared to vehicle. SrRan treatment also accelerated the growth of cortical bone over the defect, but with different kinetics compared to trabecular bone, as the effects were already significant after 4 weeks. Nanoindentation analysis demonstrated that SrRan treatment significantly increased material level properties of both trabecular bone and cortical bone filling the defect compared to vehicle. SrRan accelerates the filling of bone defect by improving cortical and trabecular bone microarchitecture both quantitatively and qualitatively.
Collapse
|
5
|
A Low Protein Diet Alters Bone Material Level Properties and the Response to In VitroRepeated Mechanical Loading. BIOMED RESEARCH INTERNATIONAL 2014; 2014:185075. [PMID: 25207272 PMCID: PMC4150450 DOI: 10.1155/2014/185075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 11/21/2022]
Abstract
Low protein intake is associated with an alteration of bone microstructure and material level properties. However, it remains unknown whether these alterations of bone tissue could influence the response to repeated mechanical loading. The authors investigated the in vitro effect of repeated loading on bone strength in humeri collected from 20 6-month-old female rats pair-fed with a control (15% casein) or an isocaloric low protein (2.5% casein) diet for 10 weeks. Bone specimens were cyclically loaded in three-point bending under load control for 2000 cycles. Humeri were then monotonically loaded to failure. The load-displacement curve of the in vitro cyclically loaded humerus was compared to the contralateral noncyclically loaded humerus and the influence of both protein diets. Material level properties were also evaluated through a nanoindentation test. Cyclic loading decreased postyield load and plastic deflection in rats fed a low protein diet, but not in those on a regular diet. Bone material level properties were altered in rats fed a low protein diet. This suggests that bone biomechanical alterations consequent to cyclic loading are more likely to occur in rats fed a low protein diet than in control animals subjected to the same in vitro cyclic loading regimen.
Collapse
|
6
|
Dubois-Ferrière V, Brennan TC, Dayer R, Rizzoli R, Ammann P. Calcitropic hormones and IGF-I are influenced by dietary protein. Endocrinology 2011; 152:1839-47. [PMID: 21343254 DOI: 10.1210/en.2010-1079] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Elderly men and women with protein deficiencies have low levels of circulating IGF-I, and it is likely this contributes to reduced bone formation and increased bone resorption. We hypothesized that calcitropic hormones are involved in this effect and are affected by dietary protein. We therefore investigated the influence of a low-protein diet on the PTH-1,25-dihydroxyvitamin D3 [1,25(OH)₂D₃] axis and IGF-I in rats, using pamidronate to block resorption that normally contributes to mineral homeostasis. We fed 6-month-old Sprague Dawley female rats isocaloric diets containing 2.5% or 15% casein for 2 wk. Pamidronate was then administered sc (0.6 mg/kg/) for 5 d. Blood samples were collected at different time points. Serum 1,25(OH)₂D₃, IGF-I, PTH, calcium, and phosphorus were determined in all rats; vertebral bone strength and histomorphometric analysis were performed in rats subject to the longest low-protein diets. We found 2 wk of low protein increased PTH levels, decreased 1,25(OH)₂D₃, calcium, and IGF-I, suggesting that increased PTH compensates for low-protein-induced decreases in 1,25(OH)₂D₃. Pamidronate augmented the increased PTH after 8 wk of low protein and prevented the 1,25(OH)₂D₃ decrease. IGF-I remained low. Protein malnutrition induced decreases in relative bone volume and trabecular thickness, which was prevented by pamidronate. Maximal load was reduced by protein restriction, but rescued by pamidronate. In summary, the low protein diet resulted in hyperparathyroidism, a reduction in circulating levels of IGF-I, and reduced 1,25(OH)₂D₃ despite hyperparathyroidism. Blocking resorption resulted in further increases in PTH and improved microarchitecture and biomechanical properties, irrespective of vitamin D status or protein intake.
Collapse
Affiliation(s)
- Victor Dubois-Ferrière
- Division of Bone Diseases, Department of Rehabilitation and Geriatrics, University Hospital, CH -1211 Geneva 14, Switzerland
| | | | | | | | | |
Collapse
|
7
|
Dayer R, Brennan TC, Rizzoli R, Ammann P. PTH improves titanium implant fixation more than pamidronate or renutrition in osteopenic rats chronically fed a low protein diet. Osteoporos Int 2010; 21:957-67. [PMID: 19859647 DOI: 10.1007/s00198-009-1031-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Accepted: 07/27/2009] [Indexed: 11/24/2022]
Abstract
SUMMARY We evaluated the effects of parathyroid hormone (PTH), pamidronate, or renutrition on osseointegration of titanium implants in the proximal tibia of rats subject to prolonged low-protein diets. PTH improved mechanical fixation, microarchitecture, and increased pull-out strength. Pamidronate or renutrition had lesser effects. PTH can thus improve implant osseointegration in protein-malnourished rats. INTRODUCTION Protein malnutrition impairs implant osseointegration in rats. PTH and pamidronate prevent deleterious effects of protein restriction introduced just prior to implantation. Whether these treatments improve osseointegration after chronic protein deprivation, i.e., in osteopenic bone at time of implantation, is unknown. We evaluated effects of PTH, pamidronate, or renutrition on resistance to pull-out of titanium rods implanted into the rat tibiae following isocaloric low-protein intake. METHODS Forty-one adult female rats received normal or isocaloric low-protein diets. Six weeks later, implants were surgically inserted into proximal tibiae. Following implantation, rats on low-protein diets were treated with PTH (1-34), pamidronate, saline vehicle, or normal protein diets, for another 8 weeks. Tibiae were removed for micro-computerised tomographic morphometry and evaluation of pull-out strength. RESULTS Pull-out strength decreased in rats on isocaloric low-protein diets compared with normal protein group (-33.4%). PTH increased pull-out strength in low-protein group, even compared to controls from the normal protein group. PTH and pamidronate increased bone volume/tissue volume, bone-to-implant contact, and trabecular thickness, whilst trabecular separation was reduced, with a shift to more plate-like bone surrounding the implants. CONCLUSIONS PTH reversed the deleterious effects of long-term protein undernutrition on mechanical fixation and bone microarchitecture and improved implant osseointegration more than pamidronate or renutrition, likely through changes to structure model index.
Collapse
Affiliation(s)
- R Dayer
- Division of Bone Diseases, Department of Rehabilitation and Geriatrics, Faculty of Medicine, Geneva University Hospitals, WHO Collaborating Center for Osteoporosis Prevention, 1211 Geneva 14, Switzerland.
| | | | | | | |
Collapse
|
8
|
Hourdé C, Jagerschmidt C, Clément-Lacroix P, Vignaud A, Ammann P, Butler-Browne GS, Ferry A. Androgen replacement therapy improves function in male rat muscles independently of hypertrophy and activation of the Akt/mTOR pathway. Acta Physiol (Oxf) 2009; 195:471-82. [PMID: 18801052 DOI: 10.1111/j.1748-1716.2008.01902.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM We analysed the effect of physiological doses of androgens following orchidectomy on skeletal muscle and bone of male rats, as well as the relationships between muscle performance, hypertrophy and the Akt/mammalian target of rapamycin (mTOR) signalling pathway involved in the control of anabolic and catabolic muscle metabolism. METHODS We studied the soleus muscle and tibia from intact rats (SHAM), orchidectomized rats treated for 3 months with vehicle (ORX), nandrolone decanoate (NAN) or dihydrotestosterone (DHT). RESULTS Orchidectomy had very little effect on the soleus muscle. However, maximal force production by soleus muscle (+69%) and fatigue resistance (+35%) in NAN rats were both increased when compared with ORX rats. In contrast, DHT treatment did not improve muscle function. The relative number of muscle fibres expressing slow myosin heavy chain and citrate synthase activity were not different in NAN and ORX rats. Moreover, NAN and DHT treatments did not modify muscle weights and cross-sectional area of muscle fibres. Furthermore, phosphorylation levels of downstream targets of the Akt/mTOR signalling pathway, Akt, ribosomal protein S6 and eukaryotic initiation factor 4E-binding protein 1 were similar in muscles of NAN, DHT and ORX rats. In addition, trabecular tibia from NAN and DHT rats displayed higher bone mineral density and bone volume when compared with ORX rats. Only in NAN rats was this associated with increased bone resistance to fracture. CONCLUSION Physiological doses of androgens are beneficial to muscle performance in orchidectomized rats without relationship to muscle and fibre hypertrophy and activation of the Akt/mTOR signalling pathway. Taken together our data clearly indicate that the activity of androgens on muscle and bone could participate in the global improvement of musculoskeletal status in the context of androgen deprivation induced by ageing.
Collapse
|
9
|
Jokihaara J, Pörsti IH, Kööbi P, Jolma PM, Mustonen JT, Saha HHT, Sievänen H, Kannus P, Iwaniec UT, Turner RT, Järvinen TLN. Treatment of experimental renal osteodystrophy with pamidronate. Kidney Int 2008; 74:319-27. [PMID: 18463610 DOI: 10.1038/ki.2008.180] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We evaluated the effects of the bisphosphonate pamidronate on bone histomorphometry, structure and strength in male rats with uninephrectomy or with chronic renal disease induced by 5/6 nephrectomy. In rats with chronic renal disease the plasma urea, phosphate and parathyroid hormone levels were significantly increased compared to rats with a uninephroctomy and none of these parameters was affected by pamidronate treatment. In the femoral midshaft, chronic renal disease reduced cortical bone mineral density and content. No difference was observed in the breaking load of the femoral midshaft. In the distal femur, a high-turnover renal osteodystrophy was found but pamidronate suppressed this bone turnover and increased bone mineral content. Treatment had no effect on chronic disease-induced augmentation of osteoid volume or fibroblast surface. These studies show that in this model of stage 3 renal disease, pamidronate increased mineral content in the femoral midshaft and distal metaphysis primarily by adding bone to endocortical and trabecular surfaces but did not reduce osteitis fibrosa.
Collapse
Affiliation(s)
- Jarkko Jokihaara
- Department of Orthopaedics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Li ZY, Yang C, Lu WW, Xu B, Lam WM, Ni GX, Abbah SA, Yang F, Cheung KMC, Luk KDK. Characteristics and mechanical properties of acrylolpamidronate-treated strontium containing bioactive bone cement. J Biomed Mater Res B Appl Biomater 2007; 83:464-71. [PMID: 17415774 DOI: 10.1002/jbm.b.30818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The aim of the present study was to determine the influence of surface treatment on the mechanical properties of strontium-containing hydroxyapatite (Sr-HA) bioactive bone cement. Previously we developed an injectable bioactive cement (SrHAC) system composed of Sr-HA powders and bisphenol A diglycidylether dimethacrylate (Bis-GMA). In this study, the Sr-HA powder was subjected to surface treatment using acrylolpamidronate, a bisphosphonate derivative, which has a polymerizable group, to improve the interface between inorganic filler and organic matrix by binding Sr-HA and copolymerizing into the matrix. After surface treatment, the compression strength, bending strength, and stiffness of the resulting composites were defined by using a material testing machine (MTS) according to ISO 5833. The fracture surface of the bone cement specimen was observed with a scanning electron microscope. Invitro cytotoxicity of surface-treated SrHAC was also studied using a tetrazolium-based cell viability assay (MTS/pms) on human osteoblast-like cells, the SaOS-2 cell line. Cells were seeded at a density of 10(4)/mL and allowed to grow in an incubator for 48 h at 37 degrees C. Results indicated that after surface treatment, the compression strength and stiffness significantly improved by 22.68 and 14.51%, respectively. The bending strength and stiffness of the bioactive bone cement also showed 19.06 and 8.91% improvements via three-point bending test. The fracture surface micromorphology after compression and bending revealed that the bonding between the resin to surface-treated filler considerably improved. The cell viability indicated that the treated particles were nontoxic and did not inhibit cell growth. This study demonstrated a new surface chemistry route to enhance the covalent bonds between inorganic fillers and polymer matrix for improving the mechanical properties of bone cement. This method not only improves the overall mechanical performance but also increases osteoblastic activity.
Collapse
Affiliation(s)
- Z Y Li
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Dayer R, Badoud I, Rizzoli R, Ammann P. Defective implant osseointegration under protein undernutrition: prevention by PTH or pamidronate. J Bone Miner Res 2007; 22:1526-33. [PMID: 17563238 DOI: 10.1359/jbmr.070610] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Protein deficiency is associated with impaired titanium osseointegration. We studied whether systemic treatment with PTH or pamidronate could influence the resistance to pull-out of titanium rods implanted into rats proximal tibia under normal and isocaloric low protein intake. PTH or pamidronate prevented the deleterious effects of protein undernutrition on bone microarchitecture close to the implant and on mechanical fixation. PTH even significantly improved implant osseointegration. INTRODUCTION Protein deficiency is highly prevalent among elderly patients hospitalized in orthopedic wards. Reduced protein intake impairs titanium osseointegration in rats. Whether stimulator of bone formation or inhibitor of bone resorption could improve implant osseointegration under protein deprivation is not known. We studied the effects of systemic treatment with PTH or pamidronate on the resistance to pull-out of titanium rods implanted into rats proximal tibia under normal and isocaloric low protein intake. MATERIALS AND METHODS We measured the resistance to pull-out 1-mm-diameter titanium rods implanted into the proximal tibias of 49 adult female rats receiving a normal or an isocaloric low protein diet. After 2 wk on either diet, the implants were inserted, and the rats received PTH(1-34), pamidronate or saline vehicle for 8 wk. The tibias were removed for microCT morphometry, followed by the evaluation of pull-out strength. RESULTS Pull-out strength was lower in rats fed an isocaloric low protein diet compared with rats fed a normal protein intake (-29%). PTH and pamidronate significantly increased pull-out strength in animals fed a normal or a low protein diet, the effect of PTH being of higher magnitude. The PTH- or pamidronate-mediated increase in pull-out strength was associated with significant increases of relative bone volume, bone-to-implant contact, and trabecular thickness, whereas trabecular spacing was reduced, in the vicinity of the implants. CONCLUSIONS We confirmed that isocaloric low protein intake impairs titanium implant osseointegration. PTH or pamidronate prevented the deleterious effects of protein undernutrition and even significantly improved the implant osseointegration. These results indicate that systemic administration of PTH or pamidronate could be considered for preventing uncemented arthroplasty loosening in protein undernourished patients.
Collapse
Affiliation(s)
- Romain Dayer
- Division of Bone Diseases (WHO Collaborating Center for Osteoporosis Prevention), Department of Rehabilitation and Geriatrics, University Hospitals of Geneva, Geneva, Switzerland
| | | | | | | |
Collapse
|
12
|
Morvan F, Boulukos K, Clément-Lacroix P, Roman Roman S, Suc-Royer I, Vayssière B, Ammann P, Martin P, Pinho S, Pognonec P, Mollat P, Niehrs C, Baron R, Rawadi G. Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 2006; 21:934-45. [PMID: 16753024 DOI: 10.1359/jbmr.060311] [Citation(s) in RCA: 414] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED Wnt/beta-catenin signaling has been proven to play a central role in bone biology. Unexpectedly, the Wnt antagonist Dkk2 is required for terminal osteoblast differentiation and mineralized matrix formation. We show that Dkk1, unlike Dkk2, negatively regulates osteoblast differentiation and bone formation. INTRODUCTION The Wnt co-receptor LRP5 is a critical regulator of bone mass. Dickkopf (Dkk) proteins act as natural Wnt antagonists by bridging LRP5/6 and Kremen, inducing the internalization of the complex. Wnt antagonists are thus expected to negatively regulation bone formation. However, Dkk2 deficiency results in increased bone, questioning the precise role of Dkks in bone metabolism. MATERIALS AND METHODS In this study, we investigated specifically the role of Dkk1 in bone in vitro and in vivo. Using rat primary calvaria cells, we studied the effect of retroviral expression of Dkk1 on osteoblast differentiation. In addition, the effect of Dkk1 osteoblast was studied in MC3T3-E1 cells by means of recombinant protein. Finally, to address the role of Dkk1 in vivo, we analyzed the bone phenotype of Dkk1(+/-) animals. RESULTS Retroviral expression of Dkk1 in rat primary calvaria cells resulted in a complete inhibition of osteoblast differentiation and formation of mineralized nodules, with a marked decrease in the expression of alkaline phosphatase. Dkk1 expression also increased adipocyte differentiation in these cell cultures. Recombinant murine Dkk1 (rmDkk1) inhibited spontaneous and induced osteoblast differentiation of MC3T3-E1 cells. To determine the role of Dkk1 in vivo and overcome the embryonic lethality of homozygous deletion, we studied the bone phenotype in heterozygous Dkk1-deficient mice. Structural, dynamic, and cellular analysis of bone remodeling in Dkk1(+/-) mice showed an increase in all bone formation parameters, with no change in bone resorption, leading to a marked increase in bone mass. Importantly, the number of osteoblasts, mineral apposition, and bone formation rate were all increased several fold. CONCLUSIONS We conclude that Dkk1 protein is a potent negative regulator of osteoblasts in vitro and in vivo. Given that a heterozygous decrease in Dkk1 expression is sufficient to induce a significant increase in bone mass, antagonizing Dkk1 should result in a potent anabolic effect.
Collapse
Affiliation(s)
- Frederic Morvan
- Department of Cell Biology, Yale University, New Heaven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|