1
|
Li A, Wang Y, Wang Y, Xiong Y, Li Y, Liu W, Zhu J, Lin Y. Effects of the FHL2 gene on the development of subcutaneous and intramuscular adipocytes in goats. BMC Genomics 2024; 25:850. [PMID: 39261767 PMCID: PMC11389066 DOI: 10.1186/s12864-024-10755-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Adipose tissue affects not only the meat quality of domestic animals, but also human health. Adipocyte differentiation is regulated by a series of regulatory genes and cyclins. Four and half-LIM protein (FHL2) is positively correlated with the hypertrophy of adipocytes and can cause symptoms such as obesity and diabetes. RESULT In the transcriptome sequencing analysis of intramuscular adipocytes after three days of differentiation, the differentially expressed gene FHL2 was found. To further explore the biological significance of the differentially expressed gene FHL2, which was downregulated in the mature adipocytes. We revealed the function of FHL2 in adipogenesis through the acquisition and loss of function of FHL2. The results showed that the overexpression of FHL2 significantly increased the expression of adipogenic genes (PPARγ, C/EBPβ) and the differentiation of intramuscular and subcutaneous adipocytes. However, silencing FHL2 significantly inhibited adipocyte differentiation. The overexpression of FHL2 increased the number of adipocytes stained with crystal violet and increased the mRNA expression of proliferation marker genes such as CCNE, PCNA, CCND and CDK2. In addition, it significantly increased the rate of EdU positive cells. In terms of apoptosis, overexpression of FHL2 significantly inhibited the expression of P53 and BAX in both intramuscular and subcutaneous adipocytes, which are involved in cell apoptosis. However, overexpression of FHL2 promoted the expression of BCL, but was rescued by the silencing of FHL2. CONCLUSIONS In summary, FHL2 may be a positive regulator of intramuscular and subcutaneous adipocyte differentiation and proliferation, and acts as a negative regulator of intramuscular and subcutaneous adipocyte apoptosis. These findings provide a theoretical basis for the subsequent elucidation of FHL2 in adipocytes.
Collapse
Affiliation(s)
- An Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Youli Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yong Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yan Xiong
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Yanyan Li
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Wei Liu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- College of Animal & Veterinary Science, Southwest Minzu University, Chengdu, China
| | - Jiangjiang Zhu
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Sichuan Province, Southwest Minzu University, Chengdu, China
| | - Yaqiu Lin
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization of Education Ministry, Southwest Minzu University, Chengdu, China.
| |
Collapse
|
2
|
Abstract
LIM domain protein 2, also known as LIM protein FHL2, is a member of the LIM-only family. Due to its LIM domain protein characteristics, FHL2 is capable of interacting with various proteins and plays a crucial role in regulating gene expression, cell growth, and signal transduction in muscle and cardiac tissue. In recent years, mounting evidence has indicated that the FHLs protein family is closely associated with the development and occurrence of human tumors. On the one hand, FHL2 acts as a tumor suppressor by down-regulating in tumor tissue and effectively inhibiting tumor development by limiting cell proliferation. On the other hand, FHL2 serves as an oncoprotein by up-regulating in tumor tissue and binding to multiple transcription factors to suppress cell apoptosis, stimulate cell proliferation and migration, and promote tumor progression. Therefore, FHL2 is considered a double-edged sword in tumors with independent and complex functions. This article reviews the role of FHL2 in tumor occurrence and development, discusses FHL2 interaction with other proteins and transcription factors, and its involvement in multiple cell signaling pathways. Finally, the clinical significance of FHL2 as a potential target in tumor therapy is examined.
Collapse
Affiliation(s)
- Jiawei Zhang
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Qun Zeng
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China
| | - Meihua She
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Changsheng West Road 28, Hengyang, 421001, China.
| |
Collapse
|
3
|
Clemente-Olivo MP, Hernández-Quiles M, Sparrius R, van der Stoel MM, Janssen V, Habibe JJ, van den Burg J, Jongejan A, Alcaraz-Sobrevals P, van Es R, Vos H, Kalkhoven E, de Vries CJM. Early adipogenesis is repressed through the newly identified FHL2-NFAT5 signaling complex. Cell Signal 2023; 104:110587. [PMID: 36610523 DOI: 10.1016/j.cellsig.2023.110587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023]
Abstract
The LIM-domain-only protein FHL2 is a modulator of signal transduction and has been shown to direct the differentiation of mesenchymal stem cells towards osteoblast and myocyte phenotypes. We hypothesized that FHL2 may simultaneously interfere with the induction of the adipocyte lineage. Therefore, we investigated the role of FHL2 in adipocyte differentiation. For these studies pre-adipocytes isolated from mouse adipose tissue and the 3T3-L1 (pre)adipocyte cell line were applied. We performed FHL2 gain of function and knockdown experiments followed by extensive RNAseq analyses and phenotypic characterization of the cells by oil-red O (ORO) lipid staining. Through affinity-purification mass spectrometry (AP-MS) novel FHL2 interacting proteins were identified. Here we report that FHL2 is expressed in pre-adipocytes and for accurate adipocyte differentiation, this protein needs to be downregulated during the early stages of adipogenesis. More specifically, constitutive overexpression of FHL2 drastically inhibits adipocyte differentiation in 3T3-L1 cells, which was demonstrated by suppressed activation of the adipogenic gene expression program as shown by RNAseq analyses, and diminished lipid accumulation. Analysis of the protein-protein interactions mediating this repressive activity of FHL2 on adipogenesis revealed the interaction of FHL2 with the Nuclear factor of activated T-cells 5 (NFAT5). NFAT5 is an established inhibitor of adipocyte differentiation and its knockdown rescued the inhibitory effect of FHL2 overexpression on 3T3-L1 differentiation, indicating that these proteins act cooperatively. We present a new regulatory function of FHL2 in early adipocyte differentiation and revealed that FHL2-mediated inhibition of pre-adipocyte differentiation is dependent on its interaction with NFAT5. FHL2 expression increases with aging, which may affect mesenchymal stem cell differentiation, more specifically inhibit adipocyte differentiation.
Collapse
Affiliation(s)
- Maria P Clemente-Olivo
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Miguel Hernández-Quiles
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Rinske Sparrius
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands
| | - Miesje M van der Stoel
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands
| | - Vera Janssen
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands
| | - Jayron J Habibe
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands
| | - Janny van den Burg
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands
| | - Aldo Jongejan
- Amsterdam UMC location University of Amsterdam, Department of Bioinformatics, Amsterdam, the Netherlands
| | - Paula Alcaraz-Sobrevals
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Robert van Es
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Harmjan Vos
- Oncode Institute and Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Eric Kalkhoven
- Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Carlie J M de Vries
- Amsterdam UMC location University of Amsterdam, Department of Medical Biochemistry, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, and Amsterdam Gastroenterology, Endocrinology and Metabolism, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Valat A, Fourel L, Sales A, Machillot P, Bouin AP, Fournier C, Bosc L, Arboléas M, Bourrin-Reynard I, Wagoner Johnson AJ, Bruckert F, Albigès-Rizo C, Picart C. Interplay between integrins and cadherins to control bone differentiation upon BMP-2 stimulation. Front Cell Dev Biol 2023; 10:1027334. [PMID: 36684447 PMCID: PMC9846056 DOI: 10.3389/fcell.2022.1027334] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Introduction: Upon BMP-2 stimulation, the osteoblastic lineage commitment in C2C12 myoblasts is associated with a microenvironmental change that occurs over several days. How does BMP-2 operate a switch in adhesive machinery to adapt to the new microenvironment and to drive bone cell fate is not well understood. Here, we addressed this question for BMP-2 delivered either in solution or physically bound of a biomimetic film, to mimic its presentation to cells via the extracellular matrix (ECM). Methods: Biommetics films were prepared using a recently developed automated method that enable high content studies of cellular processes. Comparative gene expressions were done using RNA sequencing from the encyclopedia of the regulatory elements (ENCODE). Gene expressions of transcription factors, beta chain (1, 3, 5) integrins and cadherins (M, N, and Cad11) were studied using quantitative PCR. ECM proteins and adhesion receptor expressions were also quantified by Western blots and dot blots. Their spatial organization in and around cells was studied using immuno-stainings. The individual effect of each receptor on osteogenic transcription factors and alkaline phosphatase expression were studied using silencing RNA of each integrin and cadherin receptor. The organization of fibronectin was studied using immuno-staining and quantitative microscopic analysis. Results: Our findings highlight a switch of integrin and cadherin expression during muscle to bone transdifferentiation upon BMP-2 stimulation. This switch occurs no matter the presentation mode, for BMP-2 presented in solution or via the biomimetic film. While C2C12 muscle cells express M-cadherin and Laminin-specific integrins, the BMP-2-induced transdifferentiation into bone cells is associated with an increase in the expression of cadherin-11 and collagen-specific integrins. Biomimetic films presenting matrix-bound BMP-2 enable the revelation of specific roles of the adhesive receptors depending on the transcription factor. Discussion: While β3 integrin and cadherin-11 work in concert to control early pSMAD1,5,9 signaling, β1 integrin and Cadherin-11 control RunX2, ALP activity and fibronectin organization around the cells. In contrast, while β1 integrin is also important for osterix transcriptional activity, Cadherin-11 and β5 integrin act as negative osterix regulators. In addition, β5 integrin negatively regulates RunX2. Our results show that biomimetic films can be used to delinate the specific events associated with BMP-2-mediated muscle to bone transdifferentiation. Our study reveals how integrins and cadherins work together, while exerting distinct functions to drive osteogenic programming. Different sets of integrins and cadherins have complementary mechanical roles during the time window of this transdifferentiation.
Collapse
Affiliation(s)
- Anne Valat
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Laure Fourel
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Adria Sales
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Paul Machillot
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Anne-Pascale Bouin
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Carole Fournier
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Lauriane Bosc
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
| | - Mélanie Arboléas
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Ingrid Bourrin-Reynard
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Amy J. Wagoner Johnson
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Carle Illinois College of Medicine, Urbana, IL, United States
- Carl R. Woese Institute for Genomic Biology, Urbana, IL, United States
| | - Franz Bruckert
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
| | - Corinne Albigès-Rizo
- U1209 Institut for Advanced Biosciences, CNRS 5309, University Grenoble Alpes, La Tronche, France
| | - Catherine Picart
- Grenoble Institute of Engineering, CNRS UMR 5628, LMGP, Grenoble, France
- U1292 Biosanté, INSERM, CEA, CNRS EMR 5000 Biomimetism and Regenerative Medicine, University Grenoble Alpes, Grenoble, France
- Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
5
|
Zainal Ariffin SH, Lim KW, Megat Abdul Wahab R, Zainal Ariffin Z, Rus Din RD, Shahidan MA, Johari AN, Zainol Abidin IZ. Gene expression profiles for in vitro human stem cell differentiation into osteoblasts and osteoclasts: a systematic review. PeerJ 2022; 10:e14174. [PMID: 36275474 PMCID: PMC9583853 DOI: 10.7717/peerj.14174] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/12/2022] [Indexed: 01/21/2023] Open
Abstract
Background There have been promising results published regarding the potential of stem cells in regenerative medicine. However, the vast variety of choices of techniques and the lack of a standard approach to analyse human osteoblast and osteoclast differentiation may reduce the utility of stem cells as a tool in medical applications. Therefore, this review aims to systematically evaluate the findings based on stem cell differentiation to define a standard gene expression profile approach. Methods This review was performed following the PRISMA guidelines. A systematic search of the study was conducted by retrieving articles from the electronic databases PubMed and Web of Science to identify articles focussed on gene expression and approaches for osteoblast and osteoclast differentiation. Results Six articles were included in this review; there were original articles of in vitro human stem cell differentiation into osteoblasts and osteoclasts that involved gene expression profiling. Quantitative polymerase chain reaction (qPCR) was the most used technique for gene expression to detect differentiated human osteoblasts and osteoclasts. A total of 16 genes were found to be related to differentiating osteoblast and osteoclast differentiation. Conclusion Qualitative information of gene expression provided by qPCR could become a standard technique to analyse the differentiation of human stem cells into osteoblasts and osteoclasts rather than evaluating relative gene expression. RUNX2 and CTSK could be applied to detect osteoblasts and osteoclasts, respectively, while RANKL could be applied to detect both osteoblasts and osteoclasts. This review provides future researchers with a central source of relevant information on the vast variety of gene expression approaches in analysing the differentiation of human osteoblast and osteoclast cells. In addition, these findings should enable researchers to conduct accurately and efficiently studies involving isolated human stem cell differentiation into osteoblasts and osteoclasts.
Collapse
Affiliation(s)
- Shahrul Hisham Zainal Ariffin
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Ker Wei Lim
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Rohaya Megat Abdul Wahab
- Centre of Family Dental Health, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Zaidah Zainal Ariffin
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Rus Dina Rus Din
- Forensic Science Programme, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Muhammad Ashraf Shahidan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Anis Nabilah Johari
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | |
Collapse
|
6
|
Cho S, Choi H, Jeong H, Kwon SY, Roh EJ, Jeong KH, Baek I, Kim BJ, Lee SH, Han I, Cha JM. Preclinical Study of Human Bone Marrow-Derived Mesenchymal Stem Cells Using a 3-Dimensional Manufacturing Setting for Enhancing Spinal Fusion. Stem Cells Transl Med 2022; 11:1072-1088. [PMID: 36180050 PMCID: PMC9585955 DOI: 10.1093/stcltm/szac052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 06/12/2022] [Indexed: 11/29/2022] Open
Abstract
Spinal fusion surgery is a surgical technique that connects one or more vertebrae at the same time to prevent movement between the vertebrae. Although synthetic bone substitutes or osteogenesis-inducing recombinant proteins were introduced to promote bone union, the rate of revision surgery is still high due to pseudarthrosis. To promote successful fusion after surgery, stem cells with or without biomaterials were introduced; however, conventional 2D-culture environments have resulted in a considerable loss of the innate therapeutic properties of stem cells. Therefore, we conducted a preclinical study applying 3D-spheroids of human bone marrow-dewrived mesenchymal stem cells (MSCs) to a mouse spinal fusion model. First, we built a large-scale manufacturing platform for MSC spheroids, which is applicable to good manufacturing practice (GMP). Comprehensive biomolecular examinations, which include liquid chromatography-mass spectrometry and bioinformatics could suggest a framework of quality control (QC) standards for the MSC spheroid product regarding the identity, purity, viability, and potency. In our animal study, the mass-produced and quality-controlled MSC spheroids, either undifferentiated or osteogenically differentiated were well-integrated into decorticated bone of the lumbar spine, and efficiently improved angiogenesis, bone regeneration, and mechanical stability with statistical significance compared to 2D-cultured MSCs. This study proposes a GMP-applicable bioprocessing platform and QC directions of MSC spheroids aiming for their clinical application in spinal fusion surgery as a new bone graft substitute.
Collapse
Affiliation(s)
- Sumin Cho
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Hyemin Choi
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Hyundoo Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea
| | - Su Yeon Kwon
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eun Ji Roh
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Kwang-Hun Jeong
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| | - Inho Baek
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Byoung Ju Kim
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Technology, Dongguk University, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Inbo Han
- Department of Neurosurgery, CHA University School of Medicine, CHA Bundang Medical Center, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jae Min Cha
- Department of Mechatronics Engineering, College of Engineering, Incheon National University, Incheon, Republic of Korea.,3D Stem Cell Bioengineering Laboratory, Research Institute for Engineering and Technology, Incheon National University, Incheon, Republic of Korea
| |
Collapse
|
7
|
miR-377 Inhibits Proliferation and Differentiation of Bovine Skeletal Muscle Satellite Cells by Targeting FHL2. Genes (Basel) 2022; 13:genes13060947. [PMID: 35741709 PMCID: PMC9223022 DOI: 10.3390/genes13060947] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/01/2023] Open
Abstract
Non-coding RNAs, especially microRNAs (miRNAs), play an important role in skeletal muscle growth and development. miR-377 regulates many basic biological processes and plays a key role in tumor cell proliferation, migration and apoptosis. Nevertheless, the function of miR-377 during skeletal muscle development and how it regulates skeletal muscle satellite cells (SMSCs) remains unclear. In the present study, we proposed to elucidate the regulatory mechanism of miR-377 in the proliferation and differentiation of bovine primary SMSCs. Our results showed that miR-377 can significantly inhibit the proliferation of SMSCs. In addition, we found that miR-377 can reduce myotube formation and restrain skeletal myogenic differentiation. Moreover, the results obtained from the biosynthesis and dual luciferase experiments showed that FHL2 was the target gene of miR-377. We further probed the function of FHL2 in muscle development and found that FHL2 silencing significantly suppressed the proliferation and differentiation of SMSCS, which is contrary to the role of miR-377. Furthermore, FHL2 interacts with Dishevelled-2 (Dvl2) to enable Wnt/β-catenin signaling pathway, consequently regulating skeletal muscle development. miR-377 negatively regulates the Wnt/β-catenin signaling pathway by targeting FHL2-mediated Dvl2. Overall, these findings demonstrated that miR-377 regulates the bovine SMSCs proliferation and differentiation by targeting FHL2 and attenuating the Wnt/β-catenin signaling pathway.
Collapse
|
8
|
Sales A, Khodr V, Machillot P, Chaar L, Fourel L, Guevara-Garcia A, Migliorini E, Albigès-Rizo C, Picart C. Differential bioactivity of four BMP-family members as function of biomaterial stiffness. Biomaterials 2022; 281:121363. [PMID: 35063741 PMCID: PMC7613911 DOI: 10.1016/j.biomaterials.2022.121363] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
While a soft film itself is not able to induce cell spreading, BMP-2 presented via such soft film (so called "matrix-bound BMP-2") was previously shown to trigger cell spreading, migration and downstream BMP-2 signaling. Here, we used thin films of controlled stiffness presenting matrix-bound BMPs to study the effect of four BMP members (BMP-2, 4, 7, 9) on cell adhesion and differentiation of skeletal progenitors. We performed automated high-content screening of cellular responses, including cell number, cell spreading area, SMAD phosphorylation and alkaline phosphatase activity. We revealed that the cell response to bBMPs is BMP-type specific, and involved certain BMP receptors and beta chain integrins. In addition, this response is stiffness-dependent for several receptors. The basolateral presentation of the BMPs allowed us to discriminate the specificity of cellular response, especiallyd the role of type I and II BMP receptors and of β integrins in a BMP-type and stiffness-dependent manner. Notably, BMP-2 and BMP-4 were found to have distinct roles, while ALK5, previously known as a TGF-β receptor was revealed to be involved in the BMP-pathway.
Collapse
Affiliation(s)
- Adrià Sales
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France.
| | - Valia Khodr
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Paul Machillot
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Line Chaar
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Laure Fourel
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Amaris Guevara-Garcia
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Elisa Migliorini
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France
| | - Corinne Albigès-Rizo
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB) 38000 Grenoble, France
| | - Catherine Picart
- Univ. Grenoble Alpes, CEA, INSERM U1292 Biosanté, CNRS EMR 5000 BRM, 38000 Grenoble, France; CNRS, Grenoble Institute of Technology, LMGP, UMR 5628, 3 Parvis Louis Néel, 38016, Grenoble, France; Institut Universitaire de France (IUF), France.
| |
Collapse
|
9
|
Xie Z, Xu Y, Wei X, An G, Hao M, Yu Z, Qiu L. Four and a Half LIM Domains Protein 2 Mediates Bortezomib-Induced Osteogenic Differentiation of Mesenchymal Stem Cells in Multiple Myeloma Through p53 Signaling and β-Catenin Nuclear Enrichment. Front Oncol 2021; 11:729799. [PMID: 34589431 PMCID: PMC8473907 DOI: 10.3389/fonc.2021.729799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
Myeloma bone disease (MBD), caused by the inhibition of osteoblast activity and the activation of osteoclast in the bone marrow environment, is the most frequent and life-threatening complication in multiple myeloma (MM) patients. Bortezomib (Bzb) was shown to promote MM-derived mesenchymal stem cells (MM-MSCs) differentiation to osteoblast in vitro and in animal models, promoting the bone formation and regeneration, may be mediated via β-catenin/T-cell factor (TCF) pathway. Further defining molecular mechanism of Bzb-enhanced bone formation in MM will be beneficial for the treatment of myeloma patients. The present study has identified for the first time four and a half LIM domains protein 2 (FHL2), a tissue-specific coregulator that interacts with many osteogenic marker molecules, as a therapeutic target to ameliorate MM bone disease. First, increased messenger RNA (mRNA) and protein levels of FHL2, and the mRNA level of main osteoblast markers (including Runx2, ALP, and Col1A1), were found in MM-patients-derived MSCs after Bzb treatment. FHL2 KD with short hairpin RNA (shRNA) reduced the expression of osteoblast marker genes and blocked the osteogenic differentiation of MM-MSCs regardless of the presence or absence of Bzb, implying that FHL2 is an important activator of the osteogenic differentiation of human MSCs under a proteasome inhibition condition. Molecular analysis showed that the enhanced expression of FHL2 was associated with the Bzb-induced upregulation of p53. No significant change at protein level of total β-catenin was observed with or without Bzb treatment. However, it was mostly enriched to nuclei in MSCs after Bzb treatment. Moreover, β-catenin was restricted to the perinuclear region in FHL2 KD cells. These data provide evidence that FHL2 is essential for promoting β-catenin nuclear enrichment in MM-MSCs. In conclusion, FHL2 is critical for Bzb-induced osteoblast differentiation of MM-MSCs and promotes the osteogenesis, through p53 signaling and β-catenin activation. Targeting FHL2 in MM may provide a new therapeutic strategy for treating MBD.
Collapse
Affiliation(s)
- Zhenqing Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yan Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaojing Wei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.,Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mu Hao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Zhen Yu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
10
|
Jiang Y, Chen J, Wei F, Wang Y, Chen S, Li G, Dong N. Micromechanical force promotes aortic valvular calcification. J Thorac Cardiovasc Surg 2021; 164:e313-e329. [PMID: 34507817 DOI: 10.1016/j.jtcvs.2021.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Calcified aortic valvular disease is known as an inflammation-related process related to force. The purpose of this study was to determine whether micromechanical force could induce valve calcification of porcine valvular interstitial cells and to examine the role of integrin αvβ3 in valvular calcification by using a novel method: magnetic twisting cytometry. METHODS Porcine valvular interstitial cells were cultured in vitro, and micromechanical force was applied to porcine valvular interstitial cells using magnetic twisting cytometry. Changes in calcification-related factors osteopontin and RUNX2 were detected. By using the calcification medium, the optimal magnetic twisting cytometry parameters for inducing valvular interstitial cell calcification were determined, and a magnetic twisting cytometry calcification promotion model was established. The role of αvβ3 in calcification was studied by using αvβ3 antagonists to block the function of αvβ3. RESULTS Reverse transcription polymerase chain reaction assays showed that the expression of osteopontin was enhanced 30 minutes after 25G-1Hz 5 minutes of stimulation. Western blotting assays showed that the expression of osteopontin and RUNX2 was upregulated 24 hours after 25G-1Hz 5 minutes of stimulation. The optimal magnetic twisting cytometry parameter for inducing porcine valvular interstitial cell calcification was 25G-2Hz for 10 minutes. The expression of osteopontin and RUNX2 decreased significantly after the addition of αvβ3 antagonist. Clinically, patients with bicuspid aortic valves had high expression of RUNX2 and β3 in the aortic valve, and β3 significantly correlated with RUNX2. CONCLUSIONS By using magnetic twisting cytometry, we established a porcine valvular interstitial cell calcification model by micromechanical force stimulation and obtained the optimal parameters. Integrin αvβ3 plays a key role in the aortic valve calcification process.
Collapse
Affiliation(s)
- Yefan Jiang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinjie Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Fuxiang Wei
- Laboratory for Cellular Biomechanics and Regenerative Medicine, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yixuan Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Si Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Geng Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Nianguo Dong
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Jin X, Jiao X, Jiao J, Zhang T, Cui B. Increased expression of FHL2 promotes tumorigenesis in cervical cancer and is correlated with poor prognosis. Gene 2018; 669:99-106. [PMID: 29800735 DOI: 10.1016/j.gene.2018.05.087] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 05/18/2018] [Accepted: 05/22/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Increasing evidence demonstrates that the four and a half LIM domain (FHL) gene and its protein products have different functions in the progression of various malignancies. However, the role of FHL protein 2 (FHL2) in cervical cancer (CC) has not been fully elucidated. In this study, we investigated the prognostic value of FHL2 expression in human CC tissues and the potential molecular mechanisms through which FHL2 modulates CC cell proliferation and apoptosis. MATERIALS AND METHODS We measured FHL2 expression in CC cell lines and tissues by quantitative real-time polymerase chain reaction and Western blot assays. The effects of FHL2 knockdown on cell proliferation and apoptosis in two CC cell lines were examined using RNA interference, cell counting kit-8, Western blot and flow cytometry assays. Furthermore, we assessed phosphorylated protein kinase B (p-AKT) and phosphorylated mammalian target of rapamycin (p-mTOR) expression in two CC cell lines to determine whether the AKT/mTOR pathway is involved in the effects of FHL2 silencing on cell proliferation and apoptosis. Nude mice tumorigenicity experiments were also performed to evaluate the effects of FHL2 on HeLa cell growth in vivo. RESULTS We found that FHL2 was significantly upregulated in CC cell lines and tissues. According to survival curves, high FHL2 expression levels in patients were correlated with poor prognosis. Moreover, by decreasing p-AKT and p-mTOR protein levels, silencing FHL2 significantly inhibited cell proliferation and induced apoptosis. FHL2 knockdown also induced apoptosis by increasing the Bax-to-Bcl2 ratio. By contrast, FHL2 overexpression significantly promoted cell proliferation. Finally, decreased tumour growth in an in vivo animal model also demonstrated the tumour-suppressing effects of FHL2 knockdown. CONCLUSION Our findings indicate that FHL2 is an important prognostic factor in CC and that it plays a crucial oncoprotein role by promoting cell proliferation and inhibiting apoptosis in CC, possibly by targeting the AKT/mTOR pathway.
Collapse
Affiliation(s)
- Xuejing Jin
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China; Department of Obstetrics and Gynecology, Hangzhou Women's Hospital & Hangzhou Maternity and Child Health Care Hospital, Hangzhou 310000, China
| | - Xinlin Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jun Jiao
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Teng Zhang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Baoxia Cui
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
12
|
Leite Dantas R, Brachvogel B, Schied T, Bergmeier V, Skryabin B, Vogl T, Ludwig S, Wixler V. The LIM-Only Protein Four and a Half LIM Domain Protein 2 Attenuates Development of Psoriatic Arthritis by Blocking Adam17-Mediated Tumor Necrosis Factor Release. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2388-2398. [DOI: 10.1016/j.ajpath.2017.07.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/21/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
|
13
|
Four and a half LIM domains 2 contributes to the development of human tongue squamous cell carcinoma. J Mol Histol 2016; 47:105-16. [PMID: 26759260 DOI: 10.1007/s10735-016-9654-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/08/2016] [Indexed: 10/22/2022]
Abstract
Four and a half LIM domains 2 (FHL2) is a protein of 279 amino acids in length containing four full LIM-domains and a half LIM-domain at the amino terminus. FHL2 is one transcriptional cofactor that can interact with many different proteins, such as AP-1, BRCA1, IGFBP, and integrin, and involved in organ differentiation, development, cell apoptosis, and carcinogenesis. Recent studies showed that FHL2 could play different roles acting as co-activator or corepressor in different cancer types, depending on the cell types involved. However, no report about FHL2 function in tongue squamous cell carcinoma (TSCC) is available to date. This study aims to determine the FHL2 expression and its biological functions in TSCC via in vitro and in vivo studies. Results show that FHL2 expression was associated with the pathological differentiation of TSCC samples through immunohistochemistry. FHL2 overexpression could stimulate cell proliferation, invasiveness, and metastases investigated by MTT, flow cytometry, Transwell and cell scratch methods. FHL2 could also elevate tumor-related molecule nuclear transcription factor-B (NF-кB) and β-catenin expression levels both at transcriptional and translational levels through real-time PCR and Western blot analyses. The in vivo nude mice experiment showed that the tumorigenicity of FHL2 overexpression group was significantly increased compared with control groups. These results suggest that FHL2 overexpression could contribute to the growth, proliferation, invasiveness, and metastasis of human tongue squamous cell carcinoma; furthermore, its function in TSCC might be related with the upregulation of NF-кB and β-catenin expressions.
Collapse
|
14
|
Tian X, Wang Q, Wang X. Four and a Half LIM Domain Protein 2 Enhances Differentiation and Mineralization of Human Dental Pulp Cells. J Endod 2015; 41:513-9. [DOI: 10.1016/j.joen.2014.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 12/03/2014] [Accepted: 12/09/2014] [Indexed: 12/14/2022]
|
15
|
Wixler V, Cromme C, Retser E, Meyer LH, Smyth N, Mühlenberg K, Korb-Pap A, Koers-Wunrau C, Sotsios Y, Bassel-Duby R, Baeten D, Tak PP, Niederreiter B, Redlich K, Bertrand J, Skryabin BV, Ludwig S, Pap T. FHL2 regulates the resolution of tissue damage in chronic inflammatory arthritis. Ann Rheum Dis 2014; 74:2216-23. [DOI: 10.1136/annrheumdis-2013-205061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 07/26/2014] [Indexed: 01/22/2023]
Abstract
ObjectiveWe analysed the role of the adaptor molecule four-and-a-half Lin11, Isl-1 & Mec-3 (LIM) domain protein 2 (FHL2) in the activation of fibroblast-like synoviocytes in human rheumatoid arthritis (RA) and tumour necrosis factor α (TNFα)-dependent animal models of the disease.MethodsSynovial tissues of patients with RA and osteoarthritis (OA) as well as hind paw sections from arthritic human TNFα transgenic (hTNFtg) mice and synovial fibroblasts from these were analysed. The effects of cytokines on the expression of FHL2 and disease-relevant matrixmetalloproteases (MMPs) were determined. Analyses of human tissue specimens from patients treated with anti-TNFα as well as anti-TNFα treatment of hTNFtg mice were performed to substantiate the TNFα effects on FHL2 levels. FHL2−/− mice and hTNFtg mice (with constitutive or inducible transgene expression) were crossbred to generate TNFα overexpressing FHL2-deficient animals. Signalling pathways were analysed in cells from these mice and in human cells after knock down of FHL2 by western blot.ResultsFHL2 levels were higher in RA than in OA and in hTNFtg than in wild-type mice. Surprisingly, while transforming growth factor (TGF)β-induced FHL2 expression, TNFα suppressed FHL2. In vivo, anti-TNFα treatment led to higher FHL2 levels both in RA patients and hTNFtg mice. The loss of FHL2 increased joint destruction in hTNFtg mice, which was accompanied by elevated MMP-13. In vitro, TNFα-mediated MMP-13 was significantly higher in FHL2−/− cells and after knock down of FHL2, which was caused by prolonged p38 MAPK activation.ConclusionsThese data suggest that FHL2 serves as a protective factor and that, rather than promoting the pathology, the upregulation of FHL2 in RA occurs in frame of a regenerative attempt.
Collapse
|
16
|
Alnajar A, Nordhoff C, Schied T, Chiquet-Ehrismann R, Loser K, Vogl T, Ludwig S, Wixler V. The LIM-only protein FHL2 attenuates lung inflammation during bleomycin-induced fibrosis. PLoS One 2013; 8:e81356. [PMID: 24260575 PMCID: PMC3832604 DOI: 10.1371/journal.pone.0081356] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 10/11/2013] [Indexed: 11/18/2022] Open
Abstract
Fibrogenesis is usually initiated when regenerative processes have failed and/or chronic inflammation occurs. It is characterised by the activation of tissue fibroblasts and dysregulated synthesis of extracellular matrix proteins. FHL2 (four-and-a-half LIM domain protein 2) is a scaffolding protein that interacts with numerous cellular proteins, regulating signalling cascades and gene transcription. It is involved in tissue remodelling and tumour progression. Recent data suggest that FHL2 might support fibrogenesis by maintaining the transcriptional expression of alpha smooth muscle actin and the excessive synthesis and assembly of matrix proteins in activated fibroblasts. Here, we present evidence that FHL2 does not promote bleomycin-induced lung fibrosis, but rather suppresses this process by attenuating lung inflammation. Loss of FHL2 results in increased expression of the pro-inflammatory matrix protein tenascin C and downregulation of the macrophage activating C-type lectin receptor DC-SIGN. Consequently, FHL2 knockout mice developed a severe and long-lasting lung pathology following bleomycin administration due to enhanced expression of tenascin C and impaired activation of inflammation-resolving macrophages.
Collapse
Affiliation(s)
- Abdulaleem Alnajar
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Carolin Nordhoff
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Tanja Schied
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| | - Karin Loser
- Department of Dermatology, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Thomas Vogl
- Institute of Immunology, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Viktor Wixler
- Institute of Molecular Virology, Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms-University Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
17
|
Rose L, Uludağ H. Realizing the potential of gene-based molecular therapies in bone repair. J Bone Miner Res 2013; 28:2245-62. [PMID: 23553878 DOI: 10.1002/jbmr.1944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/13/2013] [Accepted: 03/19/2013] [Indexed: 12/17/2022]
Abstract
A better understanding of osteogenesis at genetic and biochemical levels is yielding new molecular entities that can modulate bone regeneration and potentially act as novel therapies in a clinical setting. These new entities are motivating alternative approaches for bone repair by utilizing DNA-derived expression systems, as well as RNA-based regulatory molecules controlling the fate of cells involved in osteogenesis. These sophisticated mediators of osteogenesis, however, pose unique delivery challenges that are not obvious in deployment of conventional therapeutic agents. Viral and nonviral delivery systems are actively pursued in preclinical animal models to realize the potential of the gene-based medicines. This article will summarize promising bone-inducing molecular agents on the horizon as well as provide a critical review of delivery systems employed for their administration. Special attention was paid to synthetic (nonviral) delivery systems because they are more likely to be adopted for clinical testing because of safety considerations. We present a comparative analysis of dose-response relationships, as well as pharmacokinetic and pharmacodynamic features of various approaches, with the purpose of clearly defining the current frontier in the field. We conclude with the authors' perspective on the future of gene-based therapy of bone defects, articulating promising research avenues to advance the field of clinical bone repair.
Collapse
Affiliation(s)
- Laura Rose
- Department of Biomedical Engineering, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | | |
Collapse
|
18
|
Ronis MJJ, Sharma N, Vantrease J, Borengasser SJ, Ferguson M, Mercer KE, Cleves MA, Gomez-Acevedo H, Badger TM. Female mice lacking p47phox have altered adipose tissue gene expression and are protected against high fat-induced obesity. Physiol Genomics 2013; 45:351-66. [DOI: 10.1152/physiolgenomics.00148.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The current study was designed to determine if the NADPH-oxidase NOX2 plays a role in development of obesity after high fat feeding. Wild-type (WT) mice and mice lacking the essential cytosolic NOX2 system component p47phox (P47KO mice) were fed AIN-93G diets or high-fat diets (HFD) containing 45% fat and 0.5% cholesterol for 13 wk from weaning. Fat mass was increased to a similar degree by HFD in males of both genotypes ( P < 0.05). However, female P47KO-HFD mice had no increase in adiposity or adipocyte size relative to female WT-HFD mice. Resistance to HFD-driven obesity in P47KO females was associated with increased expression of hepatic TFAM and UCP-2 mRNA, markers of mitochondrial number and uncoupling, and increased expression of hepatic mitochondrial respiratory complexes and whole body energy expenditure in response to HFD. Microarray analysis revealed significantly lower expression of mRNA encoding genes linked to energy metabolism, adipocyte differentiation (PPARγ), and fatty acid uptake (CD36, lipoprotein lipase), in fat pads from female P47KO-HFD mice compared with WT-HFD females. Moreover, differentiation of preadipocytes ex vivo was suppressed more by 17β-estradiol in cells from P47KO compared with cells from WT females in conjunction with overexpression of mRNA for Pref-1 ( P < 0.05). HFD mice of both sexes were resistant to the development of hyperglycemia and hepatic steatosis ( P < 0.05) and had reduced serum triglycerides, leptin, and adiponectin relative to WT-HFD mice ( P < 0.05). These data suggest that NOX2 is an important regulator of metabolic homeostasis and diet-induced obesity.
Collapse
Affiliation(s)
- Martin J. J. Ronis
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Neha Sharma
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Jamie Vantrease
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Sarah J. Borengasser
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Matthew Ferguson
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Kelly E. Mercer
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Mario A. Cleves
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Horacio Gomez-Acevedo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pharmacology & Toxicology, University of Arkansas for Medical Sciences, Little Rock, Arkansas; and
| | - Thomas M. Badger
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| |
Collapse
|
19
|
Brun J, Dieudonné FX, Marty C, Müller J, Schüle R, Patiño-García A, Lecanda F, Fromigué O, Marie PJ. FHL2 silencing reduces Wnt signaling and osteosarcoma tumorigenesis in vitro and in vivo. PLoS One 2013; 8:e55034. [PMID: 23383046 PMCID: PMC3557236 DOI: 10.1371/journal.pone.0055034] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/17/2012] [Indexed: 12/04/2022] Open
Abstract
Background The molecular mechanisms that are involved in the growth and invasiveness of osteosarcoma, an aggressive and invasive primary bone tumor, are not fully understood. The transcriptional co-factor FHL2 (four and a half LIM domains protein 2) acts as an oncoprotein or as a tumor suppressor depending on the tissue context. In this study, we investigated the role of FHL2 in tumorigenesis in osteosarcoma model. Methodology/Principal Findings Western blot analyses showed that FHL2 is expressed above normal in most human and murine osteosarcoma cells. Tissue microarray analysis revealed that FHL2 protein expression is high in human osteosarcoma and correlates with osteosarcoma aggressiveness. In murine osteosarcoma cells, FHL2 silencing using shRNA decreased canonical Wnt/β-catenin signaling and reduced the expression of Wnt responsive genes as well as of the key Wnt molecules Wnt5a and Wnt10b. This effect resulted in inhibition of osteosarcoma cell proliferation, invasion and migration in vitro. Using xenograft experiments, we showed that FHL2 silencing markedly reduced tumor growth and lung metastasis occurence in mice. The anti-oncogenic effect of FHL2 silencing in vivo was associated with reduced cell proliferation and decreased Wnt signaling in the tumors. Conclusion/Significance Our findings demonstrate that FHL2 acts as an oncogene in osteosarcoma cells and contributes to tumorigenesis through Wnt signaling. More importantly, FHL2 depletion greatly reduces tumor cell growth and metastasis, which raises the potential therapeutic interest of targeting FHL2 to efficiently impact primary bone tumors.
Collapse
Affiliation(s)
- Julia Brun
- INSERM UMR 606, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Caroline Marty
- INSERM UMR 606, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Judith Müller
- Urologische Klink/Frauenklinik, Klinikum der Universität Freiburg and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Roland Schüle
- Urologische Klink/Frauenklinik, Klinikum der Universität Freiburg and BIOSS Centre for Biological Signalling Studies, Freiburg, Germany
| | - Ana Patiño-García
- Oncology Division, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Fernando Lecanda
- Oncology Division, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Olivia Fromigué
- INSERM UMR 606, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Pierre J. Marie
- INSERM UMR 606, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Najm P, El-Sibai M. Palladin regulation of the actin structures needed for cancer invasion. Cell Adh Migr 2013; 8:29-35. [PMID: 24525547 DOI: 10.4161/cam.28024] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cell migration and invasion involve the formation of cell adhesion structures as well as the dynamic and spatial regulation of the cytoskeleton. The adhesive structures known as podosomes and invadopodia share a common role in cell motility, adhesion, and invasion, and form when the plasma membrane of motile cells undergoes highly regulated protrusions. Palladin, a molecular scaffold, co-localizes with actin-rich structures where it plays a role in their assembly and maintenance in a wide variety of cell lines. Palladin regulates actin cytoskeleton organization as well as cell adhesion formation. Moreover, palladin contributes to the invasive nature of cancer metastatic cells by regulating invadopodia formation. Palladin seems to regulate podosome and invodopodia formation through Rho GTPases, which are known as key players in coordinating the cellular responses required for cell migration and metastasis.
Collapse
Affiliation(s)
- Paul Najm
- Department of Natural Sciences; Lebanese American University; Beirut, Lebanon
| | - Mirvat El-Sibai
- Department of Natural Sciences; Lebanese American University; Beirut, Lebanon
| |
Collapse
|
21
|
Huang C, Ogawa R. Effect of Hydrostatic Pressure on Bone Regeneration Using Human Mesenchymal Stem Cells. Tissue Eng Part A 2012; 18:2106-13. [DOI: 10.1089/ten.tea.2012.0064] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Chenyu Huang
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
- Department of Plastic Surgery, Meitan General Hospital, Beijing, China
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
22
|
Abstract
Stress-induced hypertrophic growth of the heart predisposes the heart to arrhythmia, contractile dysfunction, and clinical heart failure. FHL2 (four-and-a-half LIM domain protein 2) is expressed predominantly in the heart, and inactivation of the gene coding for FHL2 leads to exaggerated responsiveness to adrenergic stress. Activation of calcineurin occurs downstream of β-adrenergic signaling and is required for isoproterenol-induced myocardial hypertrophy. Based on these facts, we hypothesized that FHL2 suppresses stress-induced activation of calcineurin. FHL2 is upregulated in mouse hearts exposed to isoproterenol, a β-adrenergic agonist, and isoproterenol-induced increases in the NFAT target genes RCAN1.4 and BNP were amplified significantly in FHL2 knockout (FHL2(-/-)) mice compared with levels in wild-type (WT) mice. To determine whether the effect of FHL2 on NFAT target gene transcript levels occurred at the level of transcription, HEK 293 cells and neonatal rat ventricular myocytes (NRVMs) were transfected with a luciferase reporter construct harboring the NFAT-dependent promoters of either RCAN1 or interleukin 2 (IL-2). Consistent with the in vivo data, small interfering RNA (siRNA) knockdown of FHL2 led to increased activation of these promoters by constitutively active calcineurin or the calcium ionophore ionomycin. Importantly, activation of the RCAN1 promoter by ionomycin, in control and FHL2 knockdown cells, was abolished by the calcineurin inhibitor cyclosporine, confirming the calcineurin dependence of the response. Overexpression of FHL2 inhibited activation of both NFAT reporter constructs. Furthermore, NRVMs overexpressing FHL2 exhibited reduced hypertrophic growth in response to constitutively active calcineurin, as measured by cell cross-sectional area and fetal gene expression. Finally, immunostaining in isolated adult cardiomyocytes revealed colocalization of FHL2 and calcineurin predominantly at the sarcomere and activation of calcineurin by endothelin-1-facilitated interaction between FHL2 and calcineurin. FHL2 is an endogenous, agonist-dependent suppressor of calcineurin.
Collapse
|
23
|
Du J, Wang Q, Wang L, Wang X, Yang P. The expression pattern of FHL2 during mouse molar development. J Mol Histol 2012; 43:289-95. [DOI: 10.1007/s10735-012-9409-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Accepted: 03/19/2012] [Indexed: 11/30/2022]
|
24
|
Overexpression of four and a half LIM domains protein 2 promotes epithelial-mesenchymal transition-like phenotype in fish pre-osteoblasts. Biochimie 2012; 94:1128-34. [PMID: 22285966 DOI: 10.1016/j.biochi.2012.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/16/2012] [Indexed: 11/21/2022]
Abstract
FHL2 is a multifunctional protein involved in gene transcription regulation and cytoarchitecture modulation that has been recently associated with epithelial-mesenchymal transition (EMT) in colon cancer. Overexpression of FHL2 in a fish pre-osteoblastic cell line promoted cell dedifferentiation and impaired its extracellular matrix mineralization capacity. Cell cultures also acquired a novel three-dimensional structure organization, their proliferation rate was enhanced and gene expression profile was altered in agreement with an EMT-like phenotype upon overexpression of FHL2. Altogether, our results provide additional support to the relevance of FHL2 for cell differentiation and its association with hallmarks of cancer phenotype.
Collapse
|
25
|
Zheng Q, Zhao Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell 2012; 99:489-502. [PMID: 17696879 DOI: 10.1042/bc20060126] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The LIM domain is a cysteine- and histidine-rich motif that has been proposed to direct protein-protein interactions. A diverse group of proteins containing LIM domains have been identified, which display various functions including gene regulation and cell fate determination, tumour formation and cytoskeleton organization. LIM domain proteins are distributed in both the nucleus and the cytoplasm, and they exert their functions through interactions with various protein partners.
Collapse
Affiliation(s)
- Quanhui Zheng
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
26
|
Wang X, Wang Q, Wang L, Yang P. Immunohistochemical localization of four and a half LIM domains 2 in the odontoblasts of mature human teeth. J Mol Histol 2011; 42:97-103. [DOI: 10.1007/s10735-011-9311-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
|
27
|
König K, Diehl L, Rommerscheidt-Fuss U, Golletz C, Quast T, Kahl P, Kolanus W, Knolle P, Buettner R, Heukamp LC. Four-and-a-Half LIM Domain Protein 2 Is a Novel Regulator of Sphingosine 1-Phosphate Receptor 1 in CCL19-Induced Dendritic Cell Migration. THE JOURNAL OF IMMUNOLOGY 2010; 185:1466-75. [DOI: 10.4049/jimmunol.0903449] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Shi X, Bowlin KM, Garry DJ. Fhl2 interacts with Foxk1 and corepresses Foxo4 activity in myogenic progenitors. Stem Cells 2010; 28:462-9. [PMID: 20013826 DOI: 10.1002/stem.274] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adult skeletal muscle has a remarkable regenerative capacity because of a myogenic progenitor cell population. Using a gene disruption strategy, we determined that Foxk1 regulates myogenic progenitor cell activation and muscle regeneration. In this study, we undertook a yeast two hybrid screen to identify Foxk1 interacting proteins. We identified the LIM-only protein, Fhl2, as a Foxk1 interacting protein. Using transcriptional assays, we observed that Fhl2, in a dose-dependent fashion, promotes Foxk1 transcriptional repression of Foxo4 activity. Using histochemical and immunohistochemical assays, we further established that Fhl2 is expressed in the myogenic progenitor cell population. Fhl2 knockdown results in cell cycle arrest, and mice lacking Fhl2 have perturbed skeletal muscle regeneration. Collectively, these studies define a Fhl2-Foxk1 cascade that regulates the myogenic progenitor cell activity in adult skeletal muscle and enhances our understanding of muscle regeneration.
Collapse
Affiliation(s)
- Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
29
|
Sánchez-Sabaté E, Alvarez L, Gil-Garay E, Munuera L, Vilaboa N. Identification of differentially expressed genes in trabecular bone from the iliac crest of osteoarthritic patients. Osteoarthritis Cartilage 2009; 17:1106-14. [PMID: 19303468 DOI: 10.1016/j.joca.2009.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2008] [Revised: 01/27/2009] [Accepted: 01/30/2009] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is clinically characterized by degeneration of the joints and has been traditionally considered a primary disorder of articular cartilage, with secondary changes in the subchondral bone. The increased bone mass and generalized changes in bone quality observed in osteoarthritic patients suggest that OA may be a primary systemic bone disorder with secondary articular cartilage damage. The iliac crest is a skeletal site distant from the affected joint, with a minimal load-bearing function. To provide evidence that OA is a systemic disorder, we searched for differentially expressed genes in the iliac crest bone of patients suffering from hip OA. MATERIAL AND METHODS Gene expression levels between bone samples collected at surgery from the iliac crest of patients undergoing total hip arthroplasty for primary OA and younger donors, who were undergoing spinal arthrodesis, were investigated by means of oligonucleotide microarrays. To verify data detected by microarrays technology, Real Time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) assays were performed with specimens from osteoarthritic patients and donors, as well as from elderly donors who were undergoing arthroplasty for subcapital femoral neck fracture. RESULTS The microarray analysis surveyed 8327 genes and identified 83 whose expression levels differed at least 1.5-fold in the OA group (P<0.005). Comparisons between Real Time RT-PCR data from OA and the two donor groups indicated differential expression of genes involved in bone cell functions in the group of OA patients. The genes identified, including CCL2, FOS, PRSS11, DVL2, AKT1, CA2, BMP6, OMD, MMP2, TGFBR3, FLT1, BMP1 and TNFRS11B, have known roles in osteoblast or osteoclast activities. CONCLUSIONS The data from this study identify a set of genes, closely related to bone cell functions, in which differential regulation in osteoarthritic bone distant from the diseased subchondral bone might underlie the etiopathogenesis of OA as a generalized bone disease.
Collapse
Affiliation(s)
- E Sánchez-Sabaté
- Unidad de Investigación, Hospital Universitario La Paz, Paseo de la Castellana 261, Madrid 28046, Spain
| | | | | | | | | |
Collapse
|
30
|
Xu CS, Shao HY, Liu SS, Qin B, Sun XF, Tian L. Possible regulation of genes associated with intracellular signaling cascade in rat liver regeneration. Scand J Gastroenterol 2009; 44:462-70, 10 p following 470. [PMID: 18991167 PMCID: PMC2657316 DOI: 10.1080/00365520802495560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The importance of signal transduction in cell activities has been generally accepted. The purpose of this study was to analyze the regulatory effect of intracellular signaling cascade-associated genes on rat liver regeneration (LR) at transcriptional level. MATERIAL AND METHODS The associated genes were originally obtained through a search of the databases and related scientific publications; their expression profiles were then checked in rat LR using the Rat Genome 230 2.0 array. The LR-associated genes were identified by comparing the discrepancy in gene expression changes between the partial hepatectomy (PH) group and the sham operation (SO) group. RESULTS A total of 566 genes associated with the intracellular signaling cascade were LR related. The genes involved in nine signaling pathways including intracellular receptor-, second messenger-, nitric oxide-, hormone-, carbohydrate-mediated, protein kinase, small GTPase, ER-nuclear and target of rapamycin (TOR) signaling pathways were detected to be enriched in a cluster characterized by up-regulated expression in LR. According to their expression similarity and time relevance, they were separately classified into 5 and 5 groups. CONCLUSIONS It is presumed that following PH, the second messenger-mediated signaling pathway inhibits the inflammatory response, while the protein kinase cascade and small GTPase-mediated signal transduction stimulate the immune response; the intracellular receptor-, second messenger-, small GTPase-mediated signal transduction and protein kinase cascade coordinately control cell replication; the intracellular receptor-, second messenger-mediated and ER-nuclear signaling pathways facilitate cell differentiation; the MAPK cascade and small GTPase-mediated signal transduction play a role in cytoskeletal reconstruction and cell migration; the second messenger-, small GTPase-mediated and IkappaB kinase/NFkappaB cascades take care of protein transport, etc., in LR.
Collapse
Affiliation(s)
- Cun-Shuan Xu
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, P.R. China,Co-Construction Key Laboratory for Cell Differentiation and Regulation, Xinxiang, Henan Province, P.R. China
| | - Heng-Yi Shao
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, P.R. China
| | - Shuai-Shuai Liu
- Co-Construction Key Laboratory for Cell Differentiation and Regulation, Xinxiang, Henan Province, P.R. China
| | - Bo Qin
- Co-Construction Key Laboratory for Cell Differentiation and Regulation, Xinxiang, Henan Province, P.R. China
| | - Xiu-Feng Sun
- Co-Construction Key Laboratory for Cell Differentiation and Regulation, Xinxiang, Henan Province, P.R. China
| | - Lin Tian
- Co-Construction Key Laboratory for Cell Differentiation and Regulation, Xinxiang, Henan Province, P.R. China
| |
Collapse
|
31
|
Siamakpour-Reihani S, Argiros HJ, Wilmeth LJ, Haas LL, Peterson TA, Johnson DL, Shuster CB, Lyons BA. The cell migration protein Grb7 associates with transcriptional regulator FHL2 in a Grb7 phosphorylation-dependent manner. J Mol Recognit 2009; 22:9-17. [PMID: 18853468 DOI: 10.1002/jmr.916] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Grb7 is an adaptor molecule that can mediate signal transduction from multiple cell surface receptors to various downstream signaling pathways. Grb7, along with Grb10 and Grb14, make up the Grb7 protein family. This protein family has been shown to be overexpressed in certain cancers and cancer cell lines. Grb7 and a receptor tyrosine kinase (RTK), erbB2, are overexpressed in 20-30% of breast cancers. Grb7 overexpression has been linked to enhanced cell migration and metastasis, though the participants in these pathways have not been determined. In this study, we report that Grb7 interacts with four and half lim domains isoform 2 (FHL2), a transcription regulator with an important role in oncogenesis, including breast cancer. Additionally, in yeast 2-hybrid (Y2H) assays, we show that the interaction is specific to the Grb7 RA and PH domains. We have also demonstrated that full-length (FL) Grb7 and FHL2 interact in mammalian cells and that Grb7 must be tyrosine phosphorylated for this interaction to occur. Immunofluorescent microscopy demonstrates possible co-localization of Grb7 and FHL2. A model with supporting NMR evidence of Grb7 autoinhibition is proposed.
Collapse
|
32
|
Chung S, Dzeja PP, Faustino RS, Terzic A. Developmental restructuring of the creatine kinase system integrates mitochondrial energetics with stem cell cardiogenesis. Ann N Y Acad Sci 2009; 1147:254-63. [PMID: 19076447 DOI: 10.1196/annals.1427.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Differentiation of pluripotent low-energy requiring stem cells into the high-energy expenditure cardiac lineage requires coordination of genomic programming and energetic system maturation. Here, in a murine embryonic stem cell cardiac differentiation model, emergence of electrical and beating activity in cardiomyocytes developing within embryoid bodies was coupled with the establishment of the mitochondrial network and expansion of the creatine kinase (CK) phosphotransfer system. Stem cell cardiogenesis was characterized by increased total CK activity, an isoform shift manifested by amplified muscle CK-M mRNA levels and protein content, and the appearance of cardiac-specific CK-MB dimers. Treatment of differentiating stem cells with BMP2, a cardiogenic growth factor, promoted CK activity. CK-M clustered around developing myofibrils, sarcolemma, and the perinuclear compartment, whereas CK-B was tightly associated with myofibrillar alpha-actinin, forming wire-like structures extending from the nuclear compartment to the sarcolemma. Developmentally enhanced phosphotransfer enzyme-anchoring protein FHL2 coalesced the myofibrillar CK metabolic signaling circuit, providing an energetic continuum between mitochondria and the nascent contractile machinery. Thus, the evolving CK-catalyzed phosphotransfer network integrates mitochondrial energetics with cardiogenic programming, securing the emergence of energy-consuming cardiac functions in differentiating embryonic stem cells.
Collapse
Affiliation(s)
- Susan Chung
- Marriott Heart Disease Research Program, Division of Cardiovascular Diseases, Department of Medicine, Molecular Pharmacology and Experimental Therapeutics and Medical Genetics, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
33
|
Hamidouche Z, Haÿ E, Vaudin P, Charbord P, Schüle R, Marie PJ, Fromigué O. FHL2 mediates dexamethasone‐induced mesenchymal cell differentiation into osteoblasts by activating Wnt/β‐catenin signaling‐dependent Runx2 expression. FASEB J 2008; 22:3813-22. [DOI: 10.1096/fj.08-106302] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | - Eric Haÿ
- INSERM U606 and University Paris VIIParisFrance
| | | | | | - Roland Schüle
- Zentrum für Klinische Forschung and Universitäts‐FrauenklinikFreiburgGermany
| | | | | |
Collapse
|
34
|
Park J, Will C, Martin B, Gullotti L, Friedrichs N, Buettner R, Schneider H, Ludwig S, Wixler V. Deficiency in the LIM-only protein FHL2 impairs assembly of extracellular matrix proteins. FASEB J 2008; 22:2508-20. [PMID: 18356303 DOI: 10.1096/fj.07-095521] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We have described the scaffolding protein FHL2 as a component of focal adhesion structures, to which it is recruited via binding to both alpha- or beta-integrin subunits. Using mesenchymal stem cells from wild-type and FHL2-knockout mice, we show here that inactivation of FHL2 leads to impaired assembly of extracellular matrix proteins on the cell surface and to impaired bundling of focal adhesions. Both altered properties can be restored by reexpression of recombinant FHL2 protein in FHL2-null cells. Molecular analysis of integrin-mediated signaling revealed a higher phosphorylation of FAK at tyrosine 925 in FHL2-knockout cells compared to their wild-type counterpart. Consequently, the activation of the mitogenic kinase ERK was more pronounced in knockout cells on cell adhesion. The growth factor-induced activation of ERK, however, was not altered. The perturbed organization of extracellular matrix on FHL2-null cells was improved when the increased activation of MAPK was inhibited. Our findings point to a role of FHL2 in bundling of focal adhesion structures, in integrin-mediated ERK activation, and subsequently in proper allocation of matrix proteins on the cell surface.
Collapse
Affiliation(s)
- Jung Park
- Institute of Molecular Virology, Münster University Hospital Medical School, Von-Esmarch-Str. 56, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wixler V, Hirner S, Müller JM, Gullotti L, Will C, Kirfel J, Günther T, Schneider H, Bosserhoff A, Schorle H, Park J, Schüle R, Buettner R. Deficiency in the LIM-only protein Fhl2 impairs skin wound healing. ACTA ACUST UNITED AC 2007; 177:163-72. [PMID: 17420295 PMCID: PMC2064120 DOI: 10.1083/jcb.200606043] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
After skin wounding, the repair process is initiated by the release of growth factors, cytokines, and bioactive lipids from injured vessels and coagulated platelets. These signal molecules induce synthesis and deposition of a provisional extracellular matrix, as well as fibroblast invasion into and contraction of the wounded area. We previously showed that sphingosine-1-phosphate (S1P) triggers a signal transduction cascade mediating nuclear translocation of the LIM-only protein Fhl2 in response to activation of the RhoA GTPase (Muller, J.M., U. Isele, E. Metzger, A. Rempel, M. Moser, A. Pscherer, T. Breyer, C. Holubarsch, R. Buettner, and R. Schule. 2000. EMBO J. 19:359-369; Muller, J.M., E. Metzger, H. Greschik, A.K. Bosserhoff, L. Mercep, R. Buettner, and R. Schule. 2002. EMBO J. 21:736-748.). We demonstrate impaired cutaneous wound healing in Fhl2-deficient mice rescued by transgenic expression of Fhl2. Furthermore, collagen contraction and cell migration are severely impaired in Fhl2-deficient cells. Consequently, we show that the expression of alpha-smooth muscle actin, which is regulated by Fhl2, is reduced and delayed in wounds of Fhl2-deficient mice and that the expression of p130Cas, which is essential for cell migration, is reduced in Fhl2-deficient cells. In summary, our data demonstrate a function of Fhl2 as a lipid-triggered signaling molecule in mesenchymal cells regulating their migration and contraction during cutaneous wound healing.
Collapse
Affiliation(s)
- Viktor Wixler
- Institute of Molecular Virology, Münster University Hospital Medical School, D-48149 Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cottle DL, McGrath MJ, Cowling BS, Coghill ID, Brown S, Mitchell CA. FHL3 binds MyoD and negatively regulates myotube formation. J Cell Sci 2007; 120:1423-35. [PMID: 17389685 DOI: 10.1242/jcs.004739] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
MyoD initiates muscle differentiation and promotes skeletal myogenesis by regulating temporal gene expression. MyoD-interacting proteins induce regulatory effects, and the identification of new MyoD-binding partners may provide mechanistic insights into the regulation of gene expression during myogenesis. FHL3 is one of three members of the FHL protein family that are expressed in skeletal muscle, but its function in myogenesis is unknown. Overexpression of human FHL3 in mouse C2C12 cells retarded myotube formation and decreased the expression of muscle-specific regulatory genes such as myogenin but not MyoD. By contrast, short interfering RNA (siRNA)-mediated FHL3 protein knockdown enhanced myoblast differentiation associated with increased myogenin, but not MyoD protein expression, early during differentiation. We demonstrate that FHL3 is a MyoD-associated protein by direct binding assays, colocalisation in the nucleus of myoblasts and GST pull-down studies. Moreover, we determined that FHL3 interacts with MyoD, functioning as its potent negative co-transcriptional regulator. Ectopic expression of FHL3 in myoblasts impaired MyoD-mediated transcriptional activity and muscle gene expression. By contrast, siRNA-mediated FHL3 knockdown enhanced MyoD transcriptional activity in a dose-dependent manner. These findings reveal that FHL3 association with MyoD may contribute to the regulation of MyoD-dependent transcription of muscle genes and thereby myogenesis.
Collapse
Affiliation(s)
- Denny L Cottle
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, 3800, Australia
| | | | | | | | | | | |
Collapse
|
37
|
Govoni KE, Baylink DJ, Chen J, Mohan S. Disruption of four-and-a-half LIM 2 decreases bone mineral content and bone mineral density in femur and tibia bones of female mice. Calcif Tissue Int 2006; 79:112-7. [PMID: 16927043 PMCID: PMC2903958 DOI: 10.1007/s00223-006-0074-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2006] [Accepted: 05/04/2006] [Indexed: 11/27/2022]
Abstract
Four-and-a-half LIM 2 (FHL2) is a member of a family of LIM domain proteins which mediate protein-protein interactions. FHL2 acts as a coactivator and binds to important regulators of bone formation such as insulin-like growth factor binding protein (IGFBP)-5, androgen receptor, and beta-catenin. We hypothesized that FHL2 is an important regulator of bone formation. We evaluated growth and skeletal parameters in FHL2 knockout (KO) and wild-type (WT) mice at 4, 8, and 12 weeks of age. At 4 weeks of age, lack of FHL2 reduced femur, tibia, and total bone mineral content (BMC) and body weight in all mice. A gender-by-treatment interaction (P <or= 0.05) was observed for several parameters due to a greater reduction in females. Specifically, femur BMC was reduced 11-27% at 8 and 12 weeks of age and BMD was reduced 7-13% at all ages in female KO mice (P < 0.05). A similar reduction was observed in the tibias at 8 weeks of age. A 6% reduction (P = 0.07) in femur cortical thickness was observed at 12 weeks of age in female KO mice. Interestingly, a gender-specific reduction in IGFBP-5 expression was observed in the femurs of female KO mice. During differentiation of bone marrow stromal cells into osteoblasts, expression of osteocalcin, alkaline phosphatase, and bone sialoprotein was reduced 47-96% in FHL2 KO cells (P < 0.001). In conclusion, FHL2 is an important regulator of peak bone mass, lack of FHL2 produces gender- and site-specific effects on bone accretion and IGFBP-5 expression, and FHL2 is important for optimal osteoblast differentiation in vitro.
Collapse
Affiliation(s)
- K. E. Govoni
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial Veterans Affairs Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - D. J. Baylink
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial Veterans Affairs Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA
| | - J. Chen
- Department of Medicine, School of Medicine, University of California at San Diego, La Jolla, CA, USA
| | - S. Mohan
- Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial Veterans Affairs Medical Center, 11201 Benton Street, Loma Linda, CA 92357, USA
| |
Collapse
|