1
|
Ruff CB, Wallace IJ, Toya C, Muñoz MAP, Meyer JV, Busby T, Reynolds AZ, Martinez J, Miller-Moore M, Rios R. The effects of the industrial transition on lower limb bone structure: A comparison of the inhabitants of Pecos Pueblo and present-day Indigenous peoples of New Mexico. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2024; 184:e24922. [PMID: 38409941 DOI: 10.1002/ajpa.24922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Comparisons between Indigenous peoples over time and within a particular geographic region can shed light on the impact of environmental transitions on the skeleton, including relative bone strength, sexual dimorphism, and age-related changes. Here we compare long bone structural properties of the inhabitants of the late prehistoric-early historic Pecos Pueblo with those of present-day Indigenous individuals from New Mexico. MATERIALS AND METHODS Femora and tibiae of 126 adults from Pecos Pueblo and 226 present-day adults were included in the study. Cross-sectional diaphyseal properties-areas and second moments of area-were obtained from past studies of the Pecos Pueblo skeletal sample, and from computed tomography scans of recently deceased individuals in the present-day sample. RESULTS Femora and tibiae from Pecos individuals are stronger relative to body size than those of present-day Indigenous individuals. Present-day individuals are taller but not wider, and this body shape difference affects cross-sectional shape, more strongly proximally. The tibia shows anteroposterior strengthening among Pecos individuals, especially among males. Sexual dimorphism in midshaft bone shape is stronger within the Pecos Pueblo sample. With aging, Pecos individuals show more medullary expansion but also more subperiosteal expansion than present-day individuals, maintaining bone strength despite cortical thinning. DISCUSSION Higher activity levels, carried out over rough terrain and throughout adult life, likely explain the relatively stronger lower limb bones of the Pecos individuals, as well as their greater subperiosteal expansion with aging. Greater sexual dimorphism in bone structure among Pecos individuals potentially reflects greater gender-based differences in behavioral patterns.
Collapse
Affiliation(s)
- Christopher B Ruff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ian J Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | | | - Jana Valesca Meyer
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Taylor Busby
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Adam Z Reynolds
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Jordan Martinez
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Marcus Miller-Moore
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Roberto Rios
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
2
|
Wallace IJ, Toya C, Peña Muñoz MA, Meyer JV, Busby T, Reynolds AZ, Martinez J, Thompson TT, Miller-Moore M, Harris AR, Rios R, Martinez A, Jashashvili T, Ruff CB. Effects of the energy balance transition on bone mass and strength. Sci Rep 2023; 13:15204. [PMID: 37709850 PMCID: PMC10502131 DOI: 10.1038/s41598-023-42467-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023] Open
Abstract
Chronic positive energy balance has surged among societies worldwide due to increasing dietary energy intake and decreasing physical activity, a phenomenon called the energy balance transition. Here, we investigate the effects of this transition on bone mass and strength. We focus on the Indigenous peoples of New Mexico in the United States, a rare case of a group for which data can be compared between individuals living before and after the start of the transition. We show that since the transition began, bone strength in the leg has markedly decreased, even though bone mass has apparently increased. Decreased bone strength, coupled with a high prevalence of obesity, has resulted in many people today having weaker bones that must sustain excessively heavy loads, potentially heightening their risk of a bone fracture. These findings may provide insight into more widespread upward trends in bone fragility and fracture risk among societies undergoing the energy balance transition.
Collapse
Affiliation(s)
- Ian J Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA.
| | | | | | - Jana Valesca Meyer
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Taylor Busby
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Adam Z Reynolds
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jordan Martinez
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | | - Marcus Miller-Moore
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Alexandra R Harris
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Roberto Rios
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Alexis Martinez
- Department of Anthropology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Tea Jashashvili
- Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christopher B Ruff
- Center for Functional Anatomy and Evolution, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| |
Collapse
|
3
|
Abe S, Kouhia R, Nikander R, Narra N, Hyttinen J, Sievänen H. Effect of fall direction on the lower hip fracture risk in athletes with different loading histories: A finite element modeling study in multiple sideways fall configurations. Bone 2022; 158:116351. [PMID: 35131487 DOI: 10.1016/j.bone.2022.116351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 11/24/2022]
Abstract
Physical loading makes bones stronger through structural adaptation. Finding effective modes of exercise to improve proximal femur strength has the potential to decrease hip fracture risk. Previous proximal femur finite element (FE) modeling studies have indicated that the loading history comprising impact exercises is associated with substantially higher fracture load. However, those results were limited only to one specified fall direction. It remains thus unclear whether exercise-induced higher fracture load depends on the fall direction. To address this, using magnetic resonance images of proximal femora from 91 female athletes (mean age 24.7 years with >8 years competitive career) and their 20 non-athletic but physically active controls (mean age 23.7 years), proximal femur FE models were created in 12 different sideways fall configurations. The athletes were divided into five groups by typical loading patterns of their sports: high-impact (H-I: 9 triple- and 10 high-jumpers), odd-impact (O-I: 9 soccer and 10 squash players), high-magnitude (H-M: 17 powerlifters), repetitive-impact (R-I: 18 endurance runners), and repetitive non-impact (R-NI: 18 swimmers). Compared to the controls, the FE models showed that the H-I and R-I groups had significantly (p < 0.05) higher fracture loads, 11-17% and 22-28% respectively, in all fall directions while the O-I group had significantly 10-11% higher fracture loads in four fall directions. The H-M and R-NI groups did not show significant benefit in any direction. Also, the analyses of the minimum fall strength (MFS) among these multiple fall configurations confirmed significantly 15%, 11%, and 14% higher MFSs in these impact groups, respectively, compared to the controls. These results suggest that the lower hip fracture risk indicated by higher fracture loads in athletes engaged in high impact or repetitive impact sports is independent of fall direction whereas the lower fracture risk attributed to odd-impact exercise is more modest and specific to the fall direction. Moreover, in concordance with the literature, the present study also confirmed that the fracture risk increases if the impact is imposed on the more posterolateral aspect of the hip. The present results highlight the importance of engaging in the impact exercises to prevent hip fractures and call for retrospective studies to investigate whether specific impact exercise history in adolescence and young adulthood is also associated with lower incidence of hip fractures in later life.
Collapse
Affiliation(s)
- Shinya Abe
- Structural Mechanics, Faculty of Built Environment, Tampere University, Tampere, Finland.
| | - Reijo Kouhia
- Structural Mechanics, Faculty of Built Environment, Tampere University, Tampere, Finland
| | - Riku Nikander
- Gerontology Research Center, Faculty of Sports Sciences, University of Jyväskylä, Jyväskylä, Finland; Central Hospital of Central Finland, Jyväskylä, Finland
| | - Nathaniel Narra
- BioMediTech Unit, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Jari Hyttinen
- BioMediTech Unit, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland
| |
Collapse
|
4
|
Antunes-Ferreira N, Prates C, Curate F. Extracapsular fracture of the femur in an elderly male from the Church of Nossa Senhora da Anunciada (Setúbal, Portugal). INTERNATIONAL JOURNAL OF PALEOPATHOLOGY 2018; 22:18-22. [PMID: 29627581 DOI: 10.1016/j.ijpp.2018.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
In modern populations, hip fractures in older people are associated with high morbidity and mortality. Their incidence is rising; notwithstanding, fractures of the proximal femur are still relatively uncommon in archeological contexts. This case study represents a well-healed hip fracture in an aged male skeleton from Church of Nossa Senhora da Anunciada (16th-19th centuries AD) in Setúbal (Portugal). The individual was also diagnosed with diffuse idiopathic skeletal hyperostosis. Fractures of the proximal femur are usually associated with bone loss but in this case other causes are proposed, including the anatomy of the proximal femur, and the potential combined effect of diffuse idiopathic skeletal hyperostosis, cardiovascular disease, diabetes mellitus and falls.
Collapse
Affiliation(s)
- Nathalie Antunes-Ferreira
- CiiEM/IUEM, Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Monte da Caparica, Portugal; LCFPEM, Laboratório de Ciências Forenses e Psicológicas Egas Moniz, Egas Moniz Cooperativa de Ensino Superior, Monte da Caparica, Portugal; CRIA, Centro em Rede de Investigação em Antropologia, FCSH, Universidade NOVA de Lisboa, Lisboa, Portugal; LABOH, Laboratory of Biological Anthropology and Human Osteology, CRIA/FCSH, Lisboa, Portugal
| | - Carlos Prates
- IMI art, Imagens Médicas Integradas, Lisboa, Portugal
| | - Francisco Curate
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Interdisciplinary Center for Archaeology and Evolution of Human Behaviour, University of Algarve, Faro, Portugal.
| |
Collapse
|
5
|
Abe S, Narra N, Nikander R, Hyttinen J, Kouhia R, Sievänen H. Impact loading history modulates hip fracture load and location: A finite element simulation study of the proximal femur in female athletes. J Biomech 2018; 76:136-143. [PMID: 29921524 DOI: 10.1016/j.jbiomech.2018.05.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/11/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
Sideways falls impose high stress on the thin superolateral cortical bone of the femoral neck, the region regarded as a fracture-prone region of the hip. Exercise training is a natural mode of mechanical loading to make bone more robust. Exercise-induced adaptation of cortical bone along the femoral neck has been previously demonstrated. However, it is unknown whether this adaption modulates hip fracture behavior. The purpose of this study was to investigate the influence of specific exercise loading history on fall-induced hip fracture behavior by estimating fracture load and location with proximal femur finite element (FE) models created from magnetic resonance images (MRI) of 111 women with distinct exercise histories: 91 athletes (aged 24.7 ± 6.1 years, >8 years competitive career) and 20 women as controls (aged 23.7 ± 3.8 years). The athletes were divided into five groups based on typical loading patterns of their sports: high-impact (H-I: 9 triple-jumpers and 10 high jumpers), odd-impact (O-I: 9 soccer and 10 squash players), high-magnitude (H-M: 17 power-lifters), repetitive-impact (R-I: 18 endurance runners), and repetitive non-impact (R-NI: 18 swimmers). Compared to the controls, the H-I, O-I, and R-I groups had significantly higher (11-26%, p < 0.05) fracture loads. Also, the fracture location in the H-I and O-I groups was significantly more proximal (7-10%) compared to the controls. These results suggest that an exercise loading history of high impacts, impacts from unusual directions, or repetitive impacts increases the fracture load and may lower the risk of fall-induced hip fracture.
Collapse
Affiliation(s)
- Shinya Abe
- Laboratory of Civil Engineering, Tampere University of Technology, Tampere, Finland.
| | - Nathaniel Narra
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Riku Nikander
- Gerontology Research Center, Faculty of Sports Sciences, University of Jyväskylä, Jyväskylä, Finland; Central Hospital of Central Finland, Jyväskylä, Finland; GeroCenter Foundation for Aging Research and Development, Jyväskylä, Finland
| | - Jari Hyttinen
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland
| | - Reijo Kouhia
- Laboratory of Civil Engineering, Tampere University of Technology, Tampere, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland.
| |
Collapse
|
6
|
Abe S, Narra N, Nikander R, Hyttinen J, Kouhia R, Sievänen H. Exercise loading history and femoral neck strength in a sideways fall: A three-dimensional finite element modeling study. Bone 2016; 92:9-17. [PMID: 27477004 DOI: 10.1016/j.bone.2016.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 10/21/2022]
Abstract
Over 90% of hip fractures are caused by falls. Due to a fall-induced impact on the greater trochanter, the posterior part of the thin superolateral cortex of the femoral neck is known to experience the highest stress, making it a fracture-prone region. Cortical geometry of the proximal femur, in turn, reflects a mechanically appropriate form with respect to habitual exercise loading. In this finite element (FE) modeling study, we investigated whether specific exercise loading history is associated with femoral neck structural strength and estimated fall-induced stresses along the femoral neck. One hundred and eleven three-dimensional (3D) proximal femur FE models for a sideways falling situation were constructed from magnetic resonance (MR) images of 91 female athletes (aged 24.7±6.1years, >8years competitive career) and 20 non-competitive habitually active women (aged 23.7±3.8years) that served as a control group. The athletes were divided into five distinct groups based on the typical loading pattern of their sports: high-impact (H-I: triple-jumpers and high-jumpers), odd-impact (O-I: soccer and squash players), high-magnitude (H-M: power-lifters), repetitive-impact (R-I: endurance runners), and repetitive non-impact (R-NI: swimmers). The von Mises stresses obtained from the FE models were used to estimate mean fall-induced stresses in eight anatomical octants of the cortical bone cross-sections at the proximal, middle, and distal sites along the femoral neck axis. Significantly (p<0.05) lower stresses compared to the control group were observed: the H-I group - in the superoposterior (10%) and posterior (19%) octants at the middle site, and in the superoposterior (13%) and posterior (22%) octants at the distal site; the O-I group - in the superior (16%), superoposterior (16%), and posterior (12%) octants at the middle site, and in the superoposterior (14%) octant at the distal site; the H-M group - in the superior (13%) and superoposterior (15%) octants at the middle site, and a trend (p=0.07, 9%) in the superoposterior octant at the distal site; the R-I group - in the superior (14%), superoposterior (23%) and posterior (22%) octants at the middle site, and in the superoposterior (19%) and posterior (20%) octants at the distal site. The R-NI group did not differ significantly from the control group. These results suggest that exercise loading history comprising various impacts in particular is associated with a stronger femoral neck in a falling situation and may have potential to reduce hip fragility.
Collapse
Affiliation(s)
- Shinya Abe
- Department of Mechanical Engineering and Industrial Systems, Tampere University of Technology, Tampere, Finland.
| | - Nathaniel Narra
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Riku Nikander
- Gerontology Research Center, Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Central Hospital of Central Finland, Jyväskylä, Finland; GeroCenter Foundation for Aging Research and Development, Jyväskylä, Finland
| | - Jari Hyttinen
- Department of Electronics and Communications Engineering, BioMediTech, Tampere University of Technology, Tampere, Finland
| | - Reijo Kouhia
- Department of Mechanical Engineering and Industrial Systems, Tampere University of Technology, Tampere, Finland
| | - Harri Sievänen
- The UKK Institute for Health Promotion Research, Tampere, Finland.
| |
Collapse
|
7
|
Curate F, Coelho J, Gonçalves D, Coelho C, Ferreira MT, Navega D, Cunha E. A method for sex estimation using the proximal femur. Forensic Sci Int 2016; 266:579.e1-579.e7. [PMID: 27373600 DOI: 10.1016/j.forsciint.2016.06.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/26/2016] [Accepted: 06/07/2016] [Indexed: 11/27/2022]
Abstract
The assessment of sex is crucial to the establishment of a biological profile of an unidentified skeletal individual. The best methods currently available for the sexual diagnosis of human skeletal remains generally rely on the presence of well-preserved pelvic bones, which is not always the case. Postcranial elements, including the femur, have been used to accurately estimate sex in skeletal remains from forensic and bioarcheological settings. In this study, we present an approach to estimate sex using two measurements (femoral neck width [FNW] and femoral neck axis length [FNAL]) of the proximal femur. FNW and FNAL were obtained in a training sample (114 females and 138 males) from the Luís Lopes Collection (National History Museum of Lisbon). Logistic regression and the C4.5 algorithm were used to develop models to predict sex in unknown individuals. Proposed cross-validated models correctly predicted sex in 82.5-85.7% of the cases. The models were also evaluated in a test sample (96 females and 96 males) from the Coimbra Identified Skeletal Collection (University of Coimbra), resulting in a sex allocation accuracy of 80.1-86.2%. This study supports the relative value of the proximal femur to estimate sex in skeletal remains, especially when other exceedingly dimorphic skeletal elements are not accessible for analysis.
Collapse
Affiliation(s)
- Francisco Curate
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Interdisciplinary Center for Archaeology and Evolution of Human Behavior, University of Algarve, Faro, Portugal; Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| | - João Coelho
- Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - David Gonçalves
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Archaeosciences Laboratory, Directorate General for Cultural Heritage and LARC/CIBIO/InBIO, Lisboa, Portugal
| | - Catarina Coelho
- Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Maria Teresa Ferreira
- Research Centre for Anthropology and Health, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - David Navega
- Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Eugénia Cunha
- Laboratory of Forensic Anthropology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal; Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
8
|
Reeve J, Loveridge N. The fragile elderly hip: mechanisms associated with age-related loss of strength and toughness. Bone 2014; 61:138-48. [PMID: 24412288 PMCID: PMC3991856 DOI: 10.1016/j.bone.2013.12.034] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/24/2013] [Accepted: 12/31/2013] [Indexed: 01/23/2023]
Abstract
Every hip fracture begins with a microscopic crack, which enlarges explosively over microseconds. Most hip fractures in the elderly occur on falling from standing height, usually sideways or backwards. The typically moderate level of trauma very rarely causes fracture in younger people. Here, this paradox is traced to the decline of multiple protective mechanisms at many length scales from nanometres to that of the whole femur. With normal ageing, the femoral neck asymmetrically and progressively loses bone tissue precisely where the cortex is already thinnest and is also compressed in a sideways fall. At the microscopic scale of the basic remodelling unit (BMU) that renews bone tissue, increased numbers of actively remodelling BMUs associated with the reduced mechanical loading in a typically inactive old age augments the numbers of mechanical flaws in the structure potentially capable of initiating cracking. Menopause and over-deep osteoclastic resorption are associated with incomplete BMU refilling leading to excessive porosity, cortical thinning and disconnection of trabeculae. In the femoral cortex, replacement of damaged bone or bone containing dead osteocytes is inefficient, impeding the homeostatic mechanisms that match strength to habitual mechanical usage. In consequence the participation of healthy osteocytes in crack-impeding mechanisms is impaired. Observational studies demonstrate that protective crack deflection in the elderly is reduced. At the most microscopic levels attention now centres on the role of tissue ageing, which may alter the relationship between mineral and matrix that optimises the inhibition of crack progression and on the role of osteocyte ageing and death that impedes tissue maintenance and repair. This review examines recent developments in the understanding of why the elderly hip becomes fragile. This growing understanding is suggesting novel testable approaches for reducing risk of hip fracture that might translate into control of the growing worldwide impact of hip fractures on our ageing populations.
Collapse
Affiliation(s)
- Jonathan Reeve
- NIHR Musculoskeletal Biomedical Research Unit, Institute of Musculoskeletal Science, Nuffield Orthopaedic Centre, Oxford OX3 7HE, UK.
| | - Nigel Loveridge
- Orthopaedic Research Unit, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; MRC Human Nutrition Research, Cambridge, UK.
| |
Collapse
|
9
|
Narra N, Nikander R, Viik J, Hyttinen J, Sievänen H. Femoral neck cross-sectional geometry and exercise loading. Clin Physiol Funct Imaging 2013; 33:258-66. [PMID: 23692614 DOI: 10.1111/cpf.12022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/20/2012] [Indexed: 12/23/2022]
Abstract
The aim of this study was to examine the association between different types of exercise loading and femoral neck cross-sectional geometry. Our data comprised proximal femur magnetic resonance (MR) images obtained from 91 female athletes and their 20 age-matched controls. The athletes were categorized according to typical training activity - high impact (high and triple jumping), odd impact (racket and soccer playing), high magnitude (power lifting), repetitive low impact (endurance running) and repetitive non-impact (swimming). Segmented MR images at two locations, narrowest cross-section of the femoral neck (narrowFN) and the cross-section at insertion of articular capsule (distalFN), were investigated to detect between group differences in shape, curvature and buckling ratio derived using image and signal analysis tools. The narrowFN results indicated that the high-impact group had weaker antero-superior (33% larger buckling ratio than controls) but stronger inferior weight-bearing region (32% smaller than controls), while the odd-impact group had stronger superior, posterior and anterior region (21% smaller buckling ratio than controls). The distalFN results indicated that the high-impact group had stronger inferior region (37% smaller buckling ratio), but the odd-impact group had stronger superior region (22% smaller buckling ratio) than the controls. Overall, the results point towards odd-impact exercise loading, with inherently varying directions of impact, associated with more robust cross-sectional geometry along the femoral neck. In conclusion, our one-dimensional polar treatment for geometrical traits and intuitive presentation of differences in trends between exercise groups and controls provides a basis for analysis with high angular accuracy.
Collapse
Affiliation(s)
- Nathaniel Narra
- Department of Biomedical Engineering, Tampere University of Technology, Tampere, Finland.
| | | | | | | | | |
Collapse
|
10
|
Pulkkinen P, Glüer CC, Jämsä T. Investigation of differences between hip fracture types: a worthy strategy for improved risk assessment and fracture prevention. Bone 2011; 49:600-4. [PMID: 21807130 DOI: 10.1016/j.bone.2011.07.022] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Revised: 06/21/2011] [Accepted: 07/14/2011] [Indexed: 11/16/2022]
Affiliation(s)
- Pasi Pulkkinen
- Department of Medical Technology, Institute of Biomedicine, University of Oulu, Oulu, Finland.
| | | | | |
Collapse
|
11
|
More than just a bump: cam-type femoroacetabular impingement and the evolution of the femoral neck. Hip Int 2011; 21:1-8. [PMID: 21279972 DOI: 10.5301/hip.2011.6288] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/27/2010] [Indexed: 02/04/2023]
Abstract
Recent orthopaedic literature has implicated femoroacetabular impingement, the pathologic abutment of structural aberrancies in the proximal femur and acetabular rim, as an important cause of groin pain in young individuals and a potential factor in early idiopathic osteoarthritis. The etiology and risk factors for developing cam-type morphology are still unknown. The osseous anatomy of the proximal femur in humans is the culmination of nearly 400 million years of evolution. Coxa recta and coxa rotunda are the two predominant morphologies in modern animals. While the former, characterized by a straight head-neck junction, is often present in cursorial creatures, the latter, [corrected] distinguished by high offset at this junction, is exemplified in most humans. Based on the ontology and phylogeny of the proximal femur, coxa rotunda probably developed from a more primitive coxa recta. We believe that cam-type morphology is neither a redevelopment of coxa recta nor a malformation such as slipped capital epiphysis. The aspherical osteocartilaginous bump is associated with an extended physis and has been noted to appear during mid-adolescence. While this protuberance may contribute to future pathology, the authors feel that increased loading of the hip, not impingement activities, during late childhood and early adolescence predispose patients to develop this morphology.
Collapse
|
12
|
Laskey MA, de Bono S, Zhu D, Shaw CN, Laskey PJ, Ward KA, Prentice A. Evidence for enhanced characterization of cortical bone using novel pQCT shape software. J Clin Densitom 2010; 13:247-55. [PMID: 20670880 PMCID: PMC2935963 DOI: 10.1016/j.jocd.2010.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/28/2010] [Accepted: 05/12/2010] [Indexed: 11/27/2022]
Abstract
Bone shape, mass, structural geometry, and material properties determine bone strength. This study describes novel software that uses peripheral quantitative computed tomography (pQCT) images to quantify cortical bone shape and investigates whether the combination of shape-sensitive and manufacturer's software enhances the characterization of tibiae from contrasting populations. Existing tibial pQCT scans (4% and 50% sites) from Gambian (n=38) and British (n=38) women were used. Bone mass, cross-sectional area (CSA), and geometry were determined using manufacturer's software; cross-sectional shape was quantified using shape-sensitive software. At 4% site, Gambian women had lower total bone mineral content (BMC: -15.4%), CSA (-13.4%), and trabecular bone mineral density (BMD: -19%), but higher cortical subcortical BMD (6.1%). At 50% site, Gambian women had lower cortical BMC (-7.6%), cortical CSA (-12.6%), and mean cortical thickness (-15.0%), but higher cortical BMD (4.9%) and endosteal circumference (8.0%). Shape-sensitive software supported the finding that Gambian women had larger tibial endosteal circumference (9.8%), thinner mean cortical thickness (-26.5%) but smaller periosteal circumference (-5.6%). Shape-sensitive software revealed that Gambian women had tibiae with shorter maximum width (-7.6%) and thinner cortices (-22% to -41.2%) and more closely resembled a circle or ellipse. Significant differences remained after adjusting for age, height, and weight. In conclusion, shape-sensitive software enhanced the characterization of tibiae in 2 contrasting groups of women.
Collapse
|
13
|
Junno JA, Niskanen M, Nieminen MT, Maijanen H, Niinimäki J, Bloigu R, Tuukkanen J. Temporal trends in vertebral size and shape from medieval to modern-day. PLoS One 2009; 4:e4836. [PMID: 19279681 PMCID: PMC2652716 DOI: 10.1371/journal.pone.0004836] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2009] [Accepted: 02/03/2009] [Indexed: 11/18/2022] Open
Abstract
Human lumbar vertebrae support the weight of the upper body. Loads lifted and carried by the upper extremities cause significant loading stress to the vertebral bodies. It is well established that trauma-induced vertebral fractures are common especially among elderly people. The aim of this study was to investigate the morphological factors that could have affected the prevalence of trauma-related vertebral fractures from medieval times to the present day. To determine if morphological differences existed in the size and shape of the vertebral body between medieval times and the present day, the vertebral body size and shape was measured from the 4th lumbar vertebra using magnetic resonance imaging (MRI) and standard osteometric calipers. The modern samples consisted of modern Finns and the medieval samples were from archaeological collections in Sweden and Britain. The results show that the shape and size of the 4th lumbar vertebra has changed significantly from medieval times in a way that markedly affects the biomechanical characteristics of the lumbar vertebral column. These changes may have influenced the incidence of trauma- induced spinal fractures in modern populations.
Collapse
Affiliation(s)
- Juho-Antti Junno
- Department of Anatomy and Cell Biology, University of Oulu, Oulu, Finland.
| | | | | | | | | | | | | |
Collapse
|
14
|
Sievänen H, Weynand LS, Wacker WK, Simonelli C, Burke PK, Ragi S, Del Rio L. A novel DXA-based hip failure index captures hip fragility independent of BMD. J Clin Densitom 2008; 11:367-72. [PMID: 18456529 DOI: 10.1016/j.jocd.2008.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2007] [Revised: 02/25/2008] [Accepted: 02/25/2008] [Indexed: 11/28/2022]
Abstract
Capability of a novel dual-energy X-ray absorptiometry (DXA)-based hip failure index (HiFI) to discriminate between hip fracture cases and controls was evaluated. Given the constraints of planar DXA, the femoral neck was assumed a foam-filled ( approximately trabecular bone), thin-walled ( approximately cortical bone) sandwich structure, while HiFI estimated the critical force sufficient to buckle the wall of such a structure. Proximal femur DXA data from 1379 women aged 65yr and older, 268 with prior hip fracture were used. Comparison between standard areal bone mineral density (BMD), femur strength index (FSI), and HiFI was based on areas under receiver operatoring characteristic curves (AUC). The mean femoral neck BMD (SD) was 0.689 (0.109) g/cm(2) among the cases and 0.768 (0.119) g/cm(2) among the controls; the mean FSI 1.33 (0.36) and 1.54 (0.41), and the mean HiFI -0.28 (0.14) and -0.18 (0.15), respectively; all intergroup differences were highly significant (p<0.001). The intergroup difference for HiFI remained significant (p<0.002) after adjusting for age and BMD or FSI. The AUCs were 0.696 (95% confidence interval [CI]: 0.661-0.730) for BMD, 0.665 (0.630-0.700) for FSI, and 0.701 (0.666-0.736) for HiFI. In conclusion, HiFI may capture structural traits that account for femoral neck fragility independently of BMD or FSI. Obviously, the use of actual geometric and structural information from three-dimensional imaging of the femoral neck would help diminish the crude assumptions of the present DXA approach and reveal the true potential of the HiFI approach to gauge hip fragility and identify at-risk individuals for hip fractures.
Collapse
Affiliation(s)
- H Sievänen
- Bone Research Group, UKK Institute, Tampere, Finland.
| | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
The authors discuss a new study, with a 35 year follow up, showing that exercise reduces the risk of fragility fractures in men.
Collapse
|