Shiue TW, Chen YH, Wu CM, Singh G, Chen HY, Hung CH, Liaw WF, Wang YM. Nitric oxide turn-on fluorescent probe based on deamination of aromatic primary monoamines.
Inorg Chem 2012;
51:5400-8. [PMID:
22486484 DOI:
10.1021/ic300379u]
[Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The stable, water-soluble, and nonfluorescent FA-OMe can sense nitric oxide (NO) and form the intensely fluorescent product dA-FA-OMe via reductive deamination of the aromatic primary amine. The reaction is accompanied by a notable increase of the fluorescent quantum yield from 1.5 to 88.8%. The deamination mechanism of FA-OMe with NO was proposed in this study. The turn-on fluorescence signals were performed by suppression of photoinduced electron transfer (PeT), which was demonstrated by density functional theory (DFT) calculations of the components forming FA-OMe and dA-FA-OMe. Furthermore, FA-OMe showed water solubility and good stability at physiological pHs. Moreover, the selectivity study indicated that FA-OMe had high specificity for NO over other reactive oxygen/nitrogen species. In an endogenously generated NO detection study, increasing the incubation time of FA-OMe with lipopolysaccharide (LPS) pretreated Raw 264.7 murine macrophages could cause an enhanced fluorescence intensity image. In addition, a diffusion/localization cell imaging study showed that FA-OMe could be trapped in Raw 264.7 cells. These cell imaging results demonstrated that FA-OMe could be used as a turn-on fluorescent sensor for the detection of endogenously generated NO.
Collapse