• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4598975)   Today's Articles (2497)   Subscriber (49356)
For: Hardesty RM. Coherent DIAL measurement of range-resolved water vapor concentration. Appl Opt 1984;23:2545. [PMID: 18213034 DOI: 10.1364/ao.23.002545] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Number Cited by Other Article(s)
1
Yu S, Guo K, Li S, Han H, Zhang Z, Xia H. Three-dimensional detection of CO2 and wind using a 1.57 µm coherent differential absorption lidar. OPTICS EXPRESS 2024;32:21134-21148. [PMID: 38859475 DOI: 10.1364/oe.523904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 06/12/2024]
2
Iwai H, Aoki M. Evaluation of a coherent 2-µm differential absorption lidar for water vapor and radial wind velocity measurements. OPTICS EXPRESS 2023;31:13817-13836. [PMID: 37157260 DOI: 10.1364/oe.485608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
3
Aoki M, Iwai H. Dual-wavelength locking technique for coherent 2-µm differential absorption lidar applications. APPLIED OPTICS 2021;60:4259-4265. [PMID: 33983183 DOI: 10.1364/ao.423234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
4
Imaki M, Tanaka H, Hirosawa K, Yanagisawa T, Kameyama S. Demonstration of the 1.53-µm coherent DIAL for simultaneous profiling of water vapor density and wind speed. OPTICS EXPRESS 2020;28:27078-27096. [PMID: 32906968 DOI: 10.1364/oe.400331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
5
Cezard N, Le Mehaute S, Le Gouët J, Valla M, Goular D, Fleury D, Planchat C, Dolfi-Bouteyre A. Performance assessment of a coherent DIAL-Doppler fiber lidar at 1645 nm for remote sensing of methane and wind. OPTICS EXPRESS 2020;28:22345-22357. [PMID: 32752499 DOI: 10.1364/oe.394553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
6
Imaki M, Hirosawa K, Yanagisawa T, Kameyama S, Kuze H. Wavelength selection and measurement error theoretical analysis on ground-based coherent differential absorption lidar using 1.53 µm wavelength for simultaneous vertical profiling of water vapor density and wind speed. APPLIED OPTICS 2020;59:2238-2247. [PMID: 32225753 DOI: 10.1364/ao.384675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
7
Repasky KS, Bunn CE, Hayman M, Stillwell RA, Spuler SM. Modeling the performance of a diode laser-based (DLB) micro-pulse differential absorption lidar (MPD) for temperature profiling in the lower troposphere. OPTICS EXPRESS 2019;27:33543-33563. [PMID: 31878421 DOI: 10.1364/oe.27.033543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 10/16/2019] [Indexed: 06/10/2023]
8
Multi-Channel Optical Receiver for Ground-Based Topographic Hyperspectral Remote Sensing. REMOTE SENSING 2019. [DOI: 10.3390/rs11050578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
9
Development of a Multimode Field Deployable Lidar Instrument for Topographic Measurements of Unsaturated Soil Properties: Instrument Description. REMOTE SENSING 2019. [DOI: 10.3390/rs11030289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
10
Imaki M, Kojima R, Kameyama S. Development of wavelength locking circuit for 1.53 micron water vapor monitoring coherent differential absorption LIDAR. EPJ WEB OF CONFERENCES 2018. [DOI: 10.1051/epjconf/201817605039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
11
Belmonte A. Turbulence-induced measurement errors in coherent differential absorption lidar ground systems. APPLIED OPTICS 2006;45:7097-103. [PMID: 16946788 DOI: 10.1364/ao.45.007097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
12
Koch GJ, Barnes BW, Petros M, Beyon JY, Amzajerdian F, Yu J, Davis RE, Ismail S, Vay S, Kavaya MJ, Singh UN. Coherent differential absorption lidar measurements of CO2. APPLIED OPTICS 2004;43:5092-5099. [PMID: 15468711 DOI: 10.1364/ao.43.005092] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
13
Wulfmeyer V, Walther C. Future performance of ground-based and airborne water-vapor differential absorption lidar. I. Overview and theory. APPLIED OPTICS 2001;40:5304-5320. [PMID: 18364811 DOI: 10.1364/ao.40.005304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
14
Ridley KD, Pearson GN, Harris M. Improved speckle statistics in coherent differential absorption lidar with in-fiber wavelength multiplexing. APPLIED OPTICS 2001;40:2017-2023. [PMID: 18357205 DOI: 10.1364/ao.40.002017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
15
Wulfmeyer V. Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter. APPLIED OPTICS 1998;37:3804-3824. [PMID: 18273351 DOI: 10.1364/ao.37.003804] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
16
Cohen LH, van Eijk AM, de Leeuw G. Pulsed heterodyne CO(2) laser rangefinder and velocimeter with chirp correction. APPLIED OPTICS 1994;33:5665-5670. [PMID: 20935966 DOI: 10.1364/ao.33.005665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
17
Ehret G, Kiemle C, Renger W, Simmet G. Airborne remote sensing of tropospheric water vapor with a near-infrared differential absorption lidar system. APPLIED OPTICS 1993;32:4534-4551. [PMID: 20830116 DOI: 10.1364/ao.32.004534] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
18
Ben-David A, Emery SL, Gotoff SW, D'Amico FM. High pulse repetition frequency, multiple wavelength, pulsed CO(2) lidar system for atmospheric transmission and target reflectance measurements. APPLIED OPTICS 1992;31:4224-4232. [PMID: 20725406 DOI: 10.1364/ao.31.004224] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
19
Cha S, Chan KP, Killinger DK. Tunable 2.1-,microm Ho lidar for simultaneous range-resolved measurements of atmospheric water vapor and aerosol backscatter profiles. APPLIED OPTICS 1991;30:3938-3943. [PMID: 20706485 DOI: 10.1364/ao.30.003938] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
20
Chan KP, Killinger DK, Sugimoto N. Heterodyne Doppler 1-microm lidar measurement of reduced effective telescope aperture due to atmospheric turbulence. APPLIED OPTICS 1991;30:2617-2627. [PMID: 20700251 DOI: 10.1364/ao.30.002617] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
21
Zanzottera E. Differential Absorption Lidar Techniques in the Determination of Trace Pollutants and Physical Parameters of the Atmosphere. Crit Rev Anal Chem 1990. [DOI: 10.1080/10408349008051632] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
22
Kavaya MJ, Henderson SW, Russell EC, Huffaker RM, Frehlich RG. Monte Carlo computer simulations of ground-based and space-based coherent DIAL water vapor profiling. APPLIED OPTICS 1989;28:840-851. [PMID: 20548574 DOI: 10.1364/ao.28.000840] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
23
Itabe T, Asai K, Ishizu M, Aruga T, Igarashi T. Measurements of the urban ozone vertical profile with an airborne CO(2) DIAL. APPLIED OPTICS 1989;28:931-934. [PMID: 20548587 DOI: 10.1364/ao.28.000931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
24
Zhao Y, Hardesty RM. Technique for correcting effects of long CO(2) laser pulses in aerosol-backscattered coherent lidar returns. APPLIED OPTICS 1988;27:2719-2729. [PMID: 20531828 DOI: 10.1364/ao.27.002719] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
25
Grant WB, Margolis JS, Brothers AM, Tratt DM. CO(2) DIAL measurements of water vapor. APPLIED OPTICS 1987;26:3033-3042. [PMID: 20490006 DOI: 10.1364/ao.26.003033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
26
Raz E, Devir AD, Ben-Shalom A, Oppenheim UP, Lipson SG. Measurement of the integrated water vapor content in the atmosphere by a radiometric method. APPLIED OPTICS 1987;26:2436-2440. [PMID: 20489889 DOI: 10.1364/ao.26.002436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
27
Laser-photoacoustic spectroscopy of water-vapor continuum and line absorption in the 8 to 14 μm atmospheric window. ACTA ACUST UNITED AC 1987. [DOI: 10.1016/0020-0891(87)90013-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
28
Kobayashi T. Techniques for laser remote sensing of the environment. ACTA ACUST UNITED AC 1987. [DOI: 10.1080/02757258709532087] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
29
Letalick D, Renhorn I, Steinvall O. Target and atmospheric influence on coherent CO2 laser radar performance. APPLIED OPTICS 1986;25:3939-3945. [PMID: 18235724 DOI: 10.1364/ao.25.003939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA