Schwarz S, Roth GL, Rung S, Esen C, Hellmann R. Fabrication and evaluation of negative axicons for ultrashort pulsed laser applications.
OPTICS EXPRESS 2020;
28:26207-26217. [PMID:
32906897 DOI:
10.1364/oe.401084]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
We report on the fabrication and evaluation of a sharp tip negative axicon paving the way for applications in high-power ultrashort pulsed laser systems. The negative axicon is manufactured by applying a two-step all laser-based process chain consisting of ultrashort pulsed laser ablation and CO2 laser polishing finishing the component in less than 5 minutes. The finalized negative axicon reveals a surface roughness of 18 nm, fulfilling optical quality. Two measurement setups, including the ultrashort pulsed laser itself, are used to evaluate the formation of Bessel beams in detail. By applying a focusing lens behind the negative axicon, well-developed Bessel beams are generated while their lengths depend on the distance between the negative axicon and the lens. Furthermore, the diameter of the Bessel beams increase strongly with the propagation distance. By adding a second focusing lens, Bessel beams are generated at its focal position, being almost invariant of its position. Hence, the typical Bessel beam intensity distribution is observed over an entire moving range of this second lens of 300 mm. While these Bessel beams show superior quality in terms of sharp peaks with homogeneous concentric rings, only minor deviations in intensity and diameter are observed over the moving range.
Collapse