1
|
Galli R, Uckermann O. Vibrational spectroscopy and multiphoton microscopy for label-free visualization of nervous system degeneration and regeneration. Biophys Rev 2024; 16:219-235. [PMID: 38737209 PMCID: PMC11078905 DOI: 10.1007/s12551-023-01158-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 09/22/2023] [Indexed: 05/14/2024] Open
Abstract
Neurological disorders, including spinal cord injury, peripheral nerve injury, traumatic brain injury, and neurodegenerative diseases, pose significant challenges in terms of diagnosis, treatment, and understanding the underlying pathophysiological processes. Label-free multiphoton microscopy techniques, such as coherent Raman scattering, two-photon excited autofluorescence, and second and third harmonic generation microscopy, have emerged as powerful tools for visualizing nervous tissue with high resolution and without the need for exogenous labels. Coherent Raman scattering processes as well as third harmonic generation enable label-free visualization of myelin sheaths, while their combination with two-photon excited autofluorescence and second harmonic generation allows for a more comprehensive tissue visualization. They have shown promise in assessing the efficacy of therapeutic interventions and may have future applications in clinical diagnostics. In addition to multiphoton microscopy, vibrational spectroscopy methods such as infrared and Raman spectroscopy offer insights into the molecular signatures of injured nervous tissues and hold potential as diagnostic markers. This review summarizes the application of these label-free optical techniques in preclinical models and illustrates their potential in the diagnosis and treatment of neurological disorders with a special focus on injury, degeneration, and regeneration. Furthermore, it addresses current advancements and challenges for bridging the gap between research findings and their practical applications in a clinical setting.
Collapse
Affiliation(s)
- Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ortrud Uckermann
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
2
|
Gassner C, Vongsvivut J, Ng SH, Ryu M, Tobin MJ, Juodkazis S, Morikawa J, Wood BR. Linearly Polarized Infrared Spectroscopy for the Analysis of Biological Materials. APPLIED SPECTROSCOPY 2023; 77:977-1008. [PMID: 37464791 DOI: 10.1177/00037028231180233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The analysis of biological samples with polarized infrared spectroscopy (p-IR) has long been a widely practiced method for the determination of sample orientation and structural properties. In contrast to earlier works, which employed this method to investigate the fundamental chemistry of biological systems, recent interests are moving toward "real-world" applications for the evaluation and diagnosis of pathological states. This focal point review provides an up-to-date synopsis of the knowledge of biological materials garnered through linearly p-IR on biomolecules, cells, and tissues. An overview of the theory with special consideration to biological samples is provided. Different modalities which can be employed along with their capabilities and limitations are outlined. Furthermore, an in-depth discussion of factors regarding sample preparation, sample properties, and instrumentation, which can affect p-IR analysis is provided. Additionally, attention is drawn to the potential impacts of analysis of biological samples with inherently polarized light sources, such as synchrotron light and quantum cascade lasers. The vast applications of p-IR for the determination of the structure and orientation of biological samples are given. In conclusion, with considerations to emerging instrumentation, findings by other techniques, and the shift of focus toward clinical applications, we speculate on the future directions of this methodology.
Collapse
Affiliation(s)
- Callum Gassner
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Soon Hock Ng
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Meguya Ryu
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Mark J Tobin
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, Clayton, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre and ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), School of Science, Swinburne University of Technology, Hawthorn, Australia
| | - Junko Morikawa
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, Japan
| | - Bayden R Wood
- Centre for Biospectroscopy, School of Chemistry, Monash University, Clayton, Australia
| |
Collapse
|
3
|
Morizet J, Olivier N, Mahou P, Boutillon A, Stringari C, Beaurepaire E. Third harmonic imaging contrast from tubular structures in the presence of index discontinuity. Sci Rep 2023; 13:7850. [PMID: 37188736 DOI: 10.1038/s41598-023-34528-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 05/17/2023] Open
Abstract
Accurate interpretation of third harmonic generation (THG) microscopy images in terms of sample optical properties and microstructure is generally hampered by the presence of excitation field distortions resulting from sample heterogeneity. Numerical methods that account for these artifacts need to be established. In this work, we experimentally and numerically analyze the THG contrast obtained from stretched hollow glass pipettes embedded in different liquids. We also characterize the nonlinear optical properties of 2,2[Formula: see text]-thiodiethanol (TDE), a water-soluble index-matching medium. We find that index discontinuity not only changes the level and modulation amplitude of polarization-resolved THG signals, but can even change the polarization direction producing maximum THG near interfaces. We then show that a finite-difference time-domain (FDTD) modeling strategy can accurately account for contrast observed in optically heterogeneous samples, whereas reference Fourier-based numerical approaches are accurate only in the absence of index mismatch. This work opens perspectives for interpreting THG microscopy images of tubular objects and other geometries.
Collapse
Affiliation(s)
- Joséphine Morizet
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SS, UK
| | - Nicolas Olivier
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Pierre Mahou
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Arthur Boutillon
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, 01062, Germany
| | - Chiara Stringari
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
| | - Emmanuel Beaurepaire
- Laboratory for Optics and Biosciences (LOB), CNRS, INSERM, École polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France.
| |
Collapse
|
4
|
Parlanti P, Cappello V. Microscopes, tools, probes, and protocols: A guide in the route of correlative microscopy for biomedical investigation. Micron 2021; 152:103182. [PMID: 34801960 DOI: 10.1016/j.micron.2021.103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022]
Abstract
In the last decades, the advancements of microscopes technology, together with the development of new imaging approaches, are trying to address some biological questions that have been unresolved in the past: the need to combine in the same analysis temporal, functional and morphological information on the biological sample has become pressing. For this reason, the use of correlative microscopy, in which two or more imaging techniques are combined in the same analysis, is getting increasingly widespread. In fact, correlative microscopy can overcome limitations of a single imaging method, giving access to a larger amount of information from the same specimen. However, correlative microscopy can be challenging, and appropriate protocols for sample preparation and imaging methods must be selected. Here we review the state of the art of correlating electron microscopy with different imaging methods, focusing on sample preparation, tools, and labeling methods, with the aim to provide a comprehensive guide for those scientists who are approaching the field of correlative methods.
Collapse
Affiliation(s)
- Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| | - Valentina Cappello
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| |
Collapse
|