1
|
Mostaço-Guidolin LB, Smith MSD, Hewko M, Schattka B, Sowa MG, Major A, Ko ACT. Fractal dimension and directional analysis of elastic and collagen fiber arrangement in unsectioned arterial tissues affected by atherosclerosis and aging. J Appl Physiol (1985) 2019; 126:638-646. [PMID: 30629475 DOI: 10.1152/japplphysiol.00497.2018] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Structural proteins like collagen and elastin are major constituents of the extracellular matrix (ECM). ECM degradation and remodeling in diseases significantly impact the microorganization of these structural proteins. Therefore, tracking the changes of collagen and elastin fiber morphological features within ECM impacted by disease progression could provide valuable insight into pathological processes such as tissue fibrosis and atherosclerosis. Benefiting from its intrinsic high-resolution imaging power and superior biochemical specificity, nonlinear optical microscopy (NLOM) is capable of providing information critical to the understanding of ECM remodeling. In this study, alterations of structural fibrillar proteins such as collagen and elastin in arteries excised from atherosclerotic rabbits were assessed by the combination of NLOM images and textural analysis methods such as fractal dimension (FD) and directional analysis (DA). FD and DA were tested for their performance in tracking the changes of extracellular elastin and fibrillar collagen remodeling resulting from atherosclerosis progression/aging. Although other methods of image analysis to study the organization of elastin and collagen structures have been reported, the simplified calculations of FD and DA presented in this work prove that they are viable strategies for extracting and analyzing fiber-related morphology from disease-impacted tissues. Furthermore, this study also demonstrates the potential utility of FD and DA in studying ECM remodeling caused by other pathological processes such as respiratory diseases, several skin conditions, or even cancer. NEW & NOTEWORTHY Textural analyses such as fractal dimension (FD) and directional analysis (DA) are straightforward and computationally viable strategies to extract fiber-related morphological data from optical images. Therefore, objective, quantitative, and automated characterization of protein fiber morphology in extracellular matrix can be realized by using these methods in combination with digital imaging techniques such as nonlinear optical microscopy (NLOM), a highly effective visualization tool for fibrillar collagen and elastic network. Combining FD and DA with NLOM is an innovative approach to track alterations of structural fibrillar proteins. The results illustrated in this study not only prove the effectiveness of FD and DA methods in extracellular protein characterization but also demonstrate their potential value in clinical and basic biomedical research where protein microstructure characterization is critical.
Collapse
Affiliation(s)
- Leila B Mostaço-Guidolin
- Medical Devices Research Centre, National Research Council Canada , Winnipeg, Manitoba , Canada.,Department of Electrical and Computer Engineering, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Michael S D Smith
- Medical Devices Research Centre, National Research Council Canada , Winnipeg, Manitoba , Canada
| | - Mark Hewko
- Medical Devices Research Centre, National Research Council Canada , Winnipeg, Manitoba , Canada
| | - Bernie Schattka
- Medical Devices Research Centre, National Research Council Canada , Winnipeg, Manitoba , Canada
| | - Michael G Sowa
- Medical Devices Research Centre, National Research Council Canada , Winnipeg, Manitoba , Canada
| | - Arkady Major
- Department of Electrical and Computer Engineering, University of Manitoba , Winnipeg, Manitoba , Canada
| | - Alex C-T Ko
- Medical Devices Research Centre, National Research Council Canada , Winnipeg, Manitoba , Canada.,Department of Electrical and Computer Engineering, University of Manitoba , Winnipeg, Manitoba , Canada
| |
Collapse
|
2
|
Passos MHM, Lemos MR, Almeida SR, Balthazar WF, da Silva L, Huguenin JAO. Speckle patterns produced by an optical vortex and its application to surface roughness measurements. APPLIED OPTICS 2017; 56:330-335. [PMID: 28085872 DOI: 10.1364/ao.56.000330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we report on the analysis of speckle patterns produced by illuminating different rough surfaces with an optical vortex, a first-order (l=1) Laguerre-Gaussian beam. The generated speckle patterns were observed in the normal direction exploring four different planes: the diffraction plane, image plane, focal plane, and exact Fourier transform plane. The digital speckle patterns were analyzed using the Hurst exponent of digital images, an interesting tool used to study surface roughness. We show a proof of principle that the Hurst exponent of a digital speckle pattern is more sensitive with respect to the surface roughness when the speckle pattern is produced by an optical vortex and observed at a focal plane. We also show that Hurst exponents are not so sensitive with respect to the topological charge l. These results open news possibilities of investigation into speckle metrology once we have several techniques that use speckle patterns for different applications.
Collapse
|
3
|
Crawley N, Thompson M, Romaschin A. Theranostics in the Growing Field of Personalized Medicine: An Analytical Chemistry Perspective. Anal Chem 2013; 86:130-60. [DOI: 10.1021/ac4038812] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Niall Crawley
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Michael Thompson
- Department
of Chemistry and
Institute for Biomaterials and Biomedical Engineering, University of Toronto, 80 St. George Street, Toronto, Ontario M5 S 3H6, Canada
| | - Alexander Romaschin
- Keenan Research Centre and
Clinical Biochemistry, St. Michael’s Hospital, 30 Bond Street, Toronto, Ontario M5B 1W8, Canada
| |
Collapse
|
4
|
Morales Cruzado B, y Montiel SV, Atencio JAD. Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media. BIOMEDICAL OPTICS EXPRESS 2013; 4:433-46. [PMID: 23504404 PMCID: PMC3595087 DOI: 10.1364/boe.4.000433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 11/29/2012] [Accepted: 12/22/2012] [Indexed: 05/02/2023]
Abstract
In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation.
Collapse
|
5
|
Tuchin VV, Tárnok A, Zharov VP. In vivo flow cytometry: a horizon of opportunities. Cytometry A 2011; 79:737-45. [PMID: 21915991 PMCID: PMC3663136 DOI: 10.1002/cyto.a.21143] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 08/24/2011] [Indexed: 12/12/2022]
Abstract
Flow cytometry (FCM) has been a fundamental tool of biological discovery for many years. Invasive extraction of cells from a living organism, however, may lead to changes in cell properties and prevents studying cells in their native environment. These problems can be overcome by use of in vivo FCM, which provides detection and imaging of circulating normal and abnormal cells directly in blood or lymph flow. The goal of this review is to provide a brief history, features, and challenges of this new generation of FCM methods and instruments. Spectrum of possibilities of in vivo FCM in biological science (e.g., cell metabolism, immune function, or apoptosis) and medical fields (e.g., cancer, infection, and cardiovascular disorder) including integrated photoacoustic-photothermal theranostics of circulating abnormal cells are discussed with focus on recent advances of this new platform.
Collapse
Affiliation(s)
- Valery V. Tuchin
- Research-Educational Institute of Optics and Biophotonics, Saratov State University, Saratov, 410012 Russia
- Institute of Precise Mechanics and Control, Russian Academy of Sciences, Saratov 410028, Russia
- University of Oulu, Oulu, FI-90014 Finland
| | - Attila Tárnok
- Pediatric Cardiology, Heart Center, University of Leipzig, Leipzig, G04289 Germany
| | - Vladimir P. Zharov
- Phillips Classic Laser and Nanomedicine Laboratories, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205 USA
| |
Collapse
|
6
|
Atlan M, Forget BC, Boccara AC, Vitalis T, Rancillac A, Dunn AK, Gross M. Cortical blood flow assessment with frequency-domain laser Doppler microscopy. JOURNAL OF BIOMEDICAL OPTICS 2007; 12:024019. [PMID: 17477734 DOI: 10.1117/1.2715184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We report the assessment of cerebral blood flow (CBF) changes with a wide-field laser Doppler imager based on a CCD camera detection scheme, in vivo, in mice. The setup enables the acquisition of data in minimally invasive conditions. In contrast with conventional laser Doppler velocimeters and imagers, the Doppler signature of moving scatterers is measured in the frequency domain, by detuning a heterodyne optical detection. The quadratic mean of the measured frequency shift is used as an indicator of CBF. We observe a significant variability of this indicator in an experiment designed to induce blood flow changes.
Collapse
Affiliation(s)
- Michael Atlan
- Université Pierre et Marie Curie, Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Laboratoire d'Optique, CNRS UPR A0005, 10 rue Vauquelin, F-75231 Paris cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
7
|
Galanzha EI, Tuchin VV, Zharov VP. Advances in small animal mesentery models for in vivo flow cytometry, dynamic microscopy, and drug screening. World J Gastroenterol 2007; 13:192-218. [PMID: 17226898 PMCID: PMC4065947 DOI: 10.3748/wjg.v13.i2.192] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Using animal mesentery with intravital optical microscopy is a well-established experimental model for studying blood and lymph microcirculation in vivo. Recent advances in cell biology and optical techniques provide the basis for extending this model for new applications, which should generate significantly improved experimental data. This review summarizes the achievements in this specific area, including in vivo label-free blood and lymph photothermal flow cytometry, super-sensitive fluorescence image cytometry, light scattering and speckle flow cytometry, microvessel dynamic microscopy, infrared (IR) angiography, and high-speed imaging of individual cells in fast flow. The capabilities of these techniques, using the rat mesentery model, were demonstrated in various studies; e.g., real-time quantitative detection of circulating and migrating individual blood and cancer cells, studies on vascular dynamics with a focus on lymphatics under normal conditions and under different interventions (e.g. lasers, drugs, nicotine), assessment of lymphatic disturbances from experimental lymphedema, monitoring cell traffic between blood and lymph systems, and high-speed imaging of cell transient deformability in flow. In particular, the obtained results demonstrated that individual cell transportation in living organisms depends on cell type (e.g., normal blood or leukemic cells), the cell’s functional state (e.g., live, apoptotic, or necrotic), and the functional status of the organism. Possible future applications, including in vivo early diagnosis and prevention of disease, monitoring immune response and apoptosis, chemo- and radio-sensitivity tests, and drug screening, are also discussed.
Collapse
Affiliation(s)
- Ekaterina I Galanzha
- Philips Classic Laser Laboratories, University of Arkansas for Medical Sciences, 4301 W. Markham St., Little Rock, AR 72205-7199, United States.
| | | | | |
Collapse
|
8
|
Atlan M, Gross M, Forget BC, Vitalis T, Rancillac A, Dunn AK. Frequency-domain wide-field laser Doppler in vivo imaging. OPTICS LETTERS 2006; 31:2762-4. [PMID: 16936884 DOI: 10.1364/ol.31.002762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We present a new instrument, based on a low-frame-rate (8 Hz) CCD camera used in a heterodyne optical-mixing configuration, that can create wide-field laser Doppler maps. As an illustration, we show results obtained in a mouse brain, in vivo, showing the Doppler signature of blood flow. The instrument is based on a frequency-shifting digital holography scheme.
Collapse
Affiliation(s)
- M Atlan
- Laboratoire Kastler-Brossel, UMR 8552, Ecole Normale Supérieure, Paris Cedex, France.
| | | | | | | | | | | |
Collapse
|
9
|
Ganilova YA, Ulyanov SS. A study of blood flow in microvessels using biospeckle dynamics. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906020230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
10
|
Ulyanov S. Diffusing wave spectroscopy with a small number of scattering events: an implication to microflow diagnostics. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 72:052902. [PMID: 16383671 DOI: 10.1103/physreve.72.052902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2004] [Revised: 02/16/2005] [Indexed: 05/05/2023]
Abstract
Limits of applicability of classical diffusing wave spectroscopy (DWS) are essentially extended. DWS is adapted to the case of small number of scattering events. An explicit formula for correlation function of intensity fluctuations of scattered light is derived. Potentials of DWS for diagnostics of random microflow are demonstrated.
Collapse
Affiliation(s)
- Sergey Ulyanov
- Department of Optics, Saratov State University, Saratov, Russia
| |
Collapse
|
11
|
Gross M, Goy P, Forget BC, Atlan M, Ramaz F, Boccara AC, Dunn AK. Heterodyne detection of multiply scattered monochromatic light with a multipixel detector. OPTICS LETTERS 2005; 30:1357-9. [PMID: 15981532 DOI: 10.1364/ol.30.001357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A new technique is presented for measuring the spectral broadening of light that has been multiply scattered from scatterers in motion. In our method the scattered light is detected by a heterodyne receiver that uses a CCD as a multipixel detector. We obtain the frequency spectrum of the scattered light by sweeping the heterodyne local oscillator frequency. Our detection scheme combines a high optical etendue (product of the surface by the detection solid angle) with an optimal detection of the scattered photons (shot noise). Using this technique, we measure, in vivo, the frequency spectrum of the light scattered through the breast of a female volunteer.
Collapse
Affiliation(s)
- M Gross
- Laboratoire Kastler Brossel de l'Ecole Normale Superieure et de l'Université Pierre et Marie Curie associé au le Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8552, 24 Rue Lhomond, F-75231 Paris Cedex 05, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Bednov A, Ulyanov S, Cheung C, Yodh AG. Correlation properties of multiple scattered light: implication to coherent diagnostics of burned skin. JOURNAL OF BIOMEDICAL OPTICS 2004; 9:347-52. [PMID: 15065901 DOI: 10.1117/1.1646171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Modeling of skin burns has been performed in this study. Autocorrelation functions of intensity fluctuations of scattered light were measured for two-layered turbid media. The first layer served as a model for motionless scatterers (optically inhomogeneous gel film) whereas the second one simulated dynamic light scattering (Brownian motion of intralipid particles in aqueous suspension). This medium was used as a model of skin burns. A theory related quasi-elastic light scattering measurements to cutaneous blood flow was used. The dependencies of statistical properties of Doppler signal on the properties of burned skin as well as on the velocity of cutaneous blood flow have been investigated. Theoretical predictions have been verified by measurements both of dynamic and stationary light scattering in model media.
Collapse
Affiliation(s)
- Andrey Bednov
- University of Texas Medical Branch, Center for Biomedical Engineering, 301 University Boulevard, Galveston, Texas 77555-0100, USA.
| | | | | | | |
Collapse
|
13
|
Abstract
Laser Doppler velocimetry uses the frequency shift produced by the Doppler effect to measure velocity. It can be used to monitor blood flow or other tissue movement in the body. Laser speckle is a random interference effect that gives a grainy appearance to objects illuminated by laser light. If the object consists of individual moving scatterers (such as blood cells), the speckle pattern fluctuates. These fluctuations provide information about the velocity distribution of the scatterers. It can be shown that the speckle and Doppler approaches are different ways of looking at the same phenomenon. Both these techniques measure at a single point. If a map of the velocity distribution is required, some form of scanning must be introduced. This has been done for both time-varying speckle and laser Doppler. However, with the speckle technique it is also possible to devise a full-field technique that gives an instantaneous map of velocities in real time. This review article presents the theory and practice of these techniques using a tutorial approach and compares the relative merits of the scanning and full-field approaches to velocity map imaging. The article concludes with a review of reported applications of these techniques to blood perfusion mapping and imaging.
Collapse
Affiliation(s)
- J D Briers
- Kingston University, Kingston-upon-Thames, UK.
| |
Collapse
|