1
|
Winkowski M, Stacewicz T. Optical detection of formaldehyde in air in the 3.6 µm range. BIOMEDICAL OPTICS EXPRESS 2020; 11:7019-7031. [PMID: 33408977 PMCID: PMC7747927 DOI: 10.1364/boe.405384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
The optical detector of formaldehyde designed for sensing cancer biomarkers in air exhaled from human lungs with possible application in free atmosphere is described. The measurements were performed at wavelengths ranging from 3595.77-3596.20 nm. It was stated that at the pressure of 0.01 atm this absorption band exhibits the best immunity to typical interferents that might occur at high concentration in human breath. Multipass absorption spectroscopy was also applied. The method of optical fringes quenching by wavelength modulation and signal averaging over the interferences period was presented. The application of such approaches enabled the detection limit of about single ppb to be achieved.
Collapse
|
2
|
Lind AJ, Kowligy A, Timmers H, Cruz FC, Nader N, Silfies MC, Allison TK, Diddams SA. Mid-Infrared Frequency Comb Generation and Spectroscopy with Few-Cycle Pulses and χ^{(2)} Nonlinear Optics. PHYSICAL REVIEW LETTERS 2020; 124:133904. [PMID: 32302192 DOI: 10.1103/physrevlett.124.133904] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 01/22/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
The mid-infrared atmospheric window of 3-5.5 μm holds valuable information regarding molecular composition and function for fundamental and applied spectroscopy. Using a robust, mode-locked fiber-laser source of <11 fs pulses in the near infrared, we explore quadratic (χ^{(2)}) nonlinear optical processes leading to frequency comb generation across this entire mid-infrared atmospheric window. With experiments and modeling, we demonstrate intrapulse difference frequency generation that yields few-cycle mid-infrared pulses in a single pass through periodically poled lithium niobate. Harmonic and cascaded χ^{(2)} nonlinearities further provide direct access to the carrier-envelope offset frequency of the near infrared driving pulse train. The high frequency stability of the mid-infrared frequency comb is exploited for spectroscopy of acetone and carbonyl sulfide with simultaneous bandwidths exceeding 11 THz and with spectral resolution as high as 0.003 cm^{-1}. The combination of low noise and broad spectral coverage enables detection of trace gases with concentrations in the part-per-billion range.
Collapse
Affiliation(s)
- Alexander J Lind
- Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, 2000 Colorado Avenue, Boulder, Colorado 80309, USA
| | - Abijith Kowligy
- Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, 2000 Colorado Avenue, Boulder, Colorado 80309, USA
| | - Henry Timmers
- Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| | - Flavio C Cruz
- Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, SP 13083-859, Brazil
| | - Nima Nader
- Applied Physics Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| | - Myles C Silfies
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Thomas K Allison
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, New York 11794, USA
| | - Scott A Diddams
- Time and Frequency Division, National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
- Department of Physics, University of Colorado, 2000 Colorado Avenue, Boulder, Colorado 80309, USA
| |
Collapse
|
3
|
Fang B, Yang N, Zhao W, Wang C, Zhang W, Song W, Venables DS, Chen W. Improved spherical mirror multipass-cell-based interband cascade laser spectrometer for detecting ambient formaldehyde at parts per trillion by volume levels. APPLIED OPTICS 2019; 58:8743-8750. [PMID: 31873651 DOI: 10.1364/ao.58.008743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
We report the development of an improved spherical mirror multipass-cell-based interband cascade laser (ICL) spectrometer for ambient formaldehyde (HCHO) detection. The multipass cell consists of two easily manufactured spherical mirrors that are low cost, and have a simple structure, large mirror area utilization, and dense spot pattern. Optical interference caused by the multipath cell was largely reduced, resulting in good sensitivity. Using wavelength modulation spectroscopy (WMS), a detection precision (${1} \sigma $1σ) of 51 pptv in 10 s was achieved with an absorption pathlength of 96 m, which compared favorably with the performance of other state-of-the-art instruments. The precision can be further improved by using a long absorption pathlength configuration and by removing fringe-like optical noise caused by the collimation lens. Ambient application of the developed spectrometer was demonstrated.
Collapse
|
4
|
He Q, Zheng C, Lou M, Ye W, Wang Y, Tittel FK. Dual-feedback mid-infrared cavity-enhanced absorption spectroscopy for H 2CO detection using a radio-frequency electrically-modulated interband cascade laser. OPTICS EXPRESS 2018; 26:15436-15444. [PMID: 30114805 DOI: 10.1364/oe.26.015436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
A mid-infrared cavity-enhanced sensor system was demonstrated for the detection of formaldehyde (H2CO) using a continuous-wave (cw) interband cascade laser (ICL) centered at 3599 nm. A compact Fabry-Perot (F-P) cavity with a physical size of 38 × 52 × 76 mm3 was developed consisting of two concave mirrors with a radius of curvature of 80 mm and a reflectivity of 99.8% at 3.6 μm. Different from the widely reported electro-optical (EO) external modulation based Pound-Drever-Hall (PDH) locking technique, a radio-frequency electrical internal modulation based PDH technique was used for locking the laser mode to the cavity mode. A dual-feedback control on the laser current and on the piezo transducer (PZT) displacement was utilized for further stabilizing mode locking. A 20 m effective optical path length was achieved with a cavity length of 2 cm and a finesse of 1572. The effectiveness and sensitivity of the sensor system were demonstrated by targeting an absorption line at 2778.5 cm-1 for H2CO measurements. A linear relation between the cavity transmitted signal amplitude and the H2CO concentration was obtained within the range of 0-5 ppm. A 1σ detection limit of 25 parts-per-billion (ppb) was achieved with an averaging time of 1 s based on Allan-Werle variance analysis. The reported dual-feedback RF modulation based PDH technique led to a method for gas detection using a similar experimental setup and measurement scheme.
Collapse
|
5
|
Burkert A, Müller D, Rieger S, Schmidl G, Triebel W, Paa W. Formaldehyde preparation methods for pressure and temperature dependent laser-induced fluorescence measurements. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:123109. [PMID: 26724008 DOI: 10.1063/1.4937608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Formaldehyde is an excellent tracer for the early phase of ignition of hydrocarbon fuels and can be used, e.g., for characterization of single droplet ignition. However, due to its fast thermal decomposition at elevated temperatures and pressures, the determination of concentration fields from laser-induced fluorescence (LIF) measurements is difficult. In this paper, we address LIF measurements of this important combustion intermediate using a calibration cell. Here, formaldehyde is created from evaporation of paraformaldehyde. We discuss three setups for preparation of formaldehyde/air mixtures with respect to their usability for well-defined heating of formaldehyde/air mixtures. The "basic setup" uses a resist heater around the measurement cell for investigation of formaldehyde near vacuum conditions or formaldehyde/air samples after sequential admixing of air. The second setup, described for the first time in detail here, takes advantage of a constant flow formaldehyde/air regime which uses preheated air to reduce the necessary time for gas heating. We used the constant flow system to measure new pressure dependent LIF excitation spectra in the 343 nm spectral region (41 (4) absorption band of formaldehyde). The third setup, based on a novel concept for fast gas heating via excitation of SF6 (chemically inert gas) using a TEA (transverse excitation at atmospheric pressure) CO2 laser, allows to further minimize both gas heating time and thermal decomposition. Here, an admixture of CO2 is served for real time temperature measurement based on Raman scattering. The applicability of the fast laser heating system has been demonstrated with gas mixtures of SF6 + air, SF6 + N2, as well as SF6 + N2 + CO2 at 1 bar total pressure.
Collapse
Affiliation(s)
- A Burkert
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - D Müller
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - S Rieger
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - G Schmidl
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - W Triebel
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - W Paa
- Leibniz Institute of Photonic Technology (IPHT), Albert-Einstein-Straße 9, 07745 Jena, Germany
| |
Collapse
|
6
|
Dong L, Yu Y, Li C, So S, Tittel FK. Ppb-level formaldehyde detection using a CW room-temperature interband cascade laser and a miniature dense pattern multipass gas cell. OPTICS EXPRESS 2015; 23:19821-19830. [PMID: 26367641 DOI: 10.1364/oe.23.019821] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A ppb-level formaldehyde (H2CO) sensor was developed using a thermoelectrically cooled (TEC), continuous-wave (CW) room temperature interband cascade laser (ICL) emitting at 3.59 μm and a miniature dense pattern multipass gas cell with >50 m optical path length. Performance of the sensor was investigated with two measurement schemes: direct absorption (DAS) and wavelength modulation spectroscopy (WMS). With an integration time of less than 1.5 second, a detection limit of ~3 ppbv for H2CO measurement with precision of 1.25 ppbv for DAS and 0.58 ppbv for WMS, respectively, was achieved without zero air based background subtraction. An Allan-Werle variance analysis indicated that the precisions can be further improved to 0.26 ppbv @ 300s for DAS and 69 pptv @ 90 s for WMS, respectively. A side-by-side comparison between two measurement schemes is also discussed in detail.
Collapse
|
7
|
Mohamed T, Zhu F, Chen S, Strohaber J, Kolomenskii AA, Bengali AA, Schuessler HA. Multipass cell based on confocal mirrors for sensitive broadband laser spectroscopy in the near infrared. APPLIED OPTICS 2013; 52:7145-7151. [PMID: 24217732 DOI: 10.1364/ao.52.007145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 09/12/2013] [Indexed: 06/02/2023]
Abstract
We report on broadband absorption spectroscopy in the near IR using a multipass cell design based on highly reflecting mirrors in a confocal arrangement having the particular aim of achieving long optical paths. We demonstrate a path length of 314 m in a cell consisting of two sets of highly reflecting mirrors with identical focal length, spaced 0.5 m apart. The multipass cell covers this path length in a relatively small volume of 1.25 l with the light beam sampling the whole volume. In a first application, the absorption spectra of the greenhouse gases CO(2), CH(4), and CO were measured. In these measurements we used a femtosecond fiber laser with a broadband spectral range spanning the near IR from 1.5 to 1.7 μm. The absorption spectra show a high signal-to-noise ratio, from which we derive a sensitivity limit of 6 ppmv for methane observed in a mixture with air.
Collapse
|
8
|
Lundqvist S, Kluczynski P, Weih R, von Edlinger M, Nähle L, Fischer M, Bauer A, Höfling S, Koeth J. Sensing of formaldehyde using a distributed feedback interband cascade laser emitting around 3493 nm. APPLIED OPTICS 2012; 51:6009-6013. [PMID: 22945146 DOI: 10.1364/ao.51.006009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 06/28/2012] [Indexed: 06/01/2023]
Abstract
We have demonstrated sensing of formaldehyde (H(2)CO) using a room-temperature distributed feedback interband cascade laser (ICL) emitting around 3493 nm. The ICL has been characterized and proved to be very suitable for tunable laser spectroscopy (TLS). The H(2)CO TLS spectra were recorded in direct absorption mode and showed excellent agreement with the Pacific Northwest National Laboratory database. The measurements reported here were taken from a series of measurements of a mixture of H(2)CO in air obtained by vaporizing a solution also containing methanol and formic acid. We obtained a resolution limit better than 1 ppm × m assuming a relative absorption of 10(-3).
Collapse
Affiliation(s)
- Stefan Lundqvist
- Airoptic Sp. z o.o., Janiny Omańkowskiej 58, 60–465 Poznań, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Weibring P, Richter D, Walega JG, Fried A. First demonstration of a high performance difference frequency spectrometer on airborne platforms. OPTICS EXPRESS 2007; 15:13476-95. [PMID: 19550617 DOI: 10.1364/oe.15.013476] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We discuss the first airborne deployment and performance tests of a mid-IR difference frequency spectrometer system for highly sensitive measurements of formaldehyde. The laser system is based upon difference-frequency generation (DFG) at ~3.5 mum by mixing a DFB diode laser at 1562 nm and a distributed feedback (DFB) fiber laser at 1083 nm in a periodically poled LiNbO(3) (PPLN) crystal. Advanced LabVIEW software for lock-in, dual-beam optical noise subtraction, thermal control and active wavelength stabilization, renders a sensitivity of ~20 pptv (Absorbance ~7*10(-7)) for 30s of averaging. The instrument's performance characteristics spanning more than 300 flight hours during three consecutive airborne field missions MIRAGE, IMPEX and TexAQS operating on two airborne platforms, NCAR's C-130 and NOAA's P-3 aircraft are demonstrated.
Collapse
|
10
|
Cao Z, Gao X, Deng L, Chen WD, Yuan Y, Zhang W, Gong Z. A difference frequency generation spectrometer and its detection of atmospheric N2O. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2007; 68:74-7. [PMID: 17307028 DOI: 10.1016/j.saa.2006.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 11/03/2006] [Indexed: 05/14/2023]
Abstract
The paper reports the realization and characterization of a difference frequency generation spectrometer using periodically poled lithium niobate (PPLN) crystal. The pump and signal laser we used is a Ti:sapphire ring laser and a diode pumped monolithic Nd:YAG laser, respectively. The continuous wave (cw) infrared radiation from 2.8 to 4.8 microm has been generated. The idler radiation can be used to study fundamental absorption bands of molecules and trace gas detection. In this work, we report the detection of nitrous oxide (N(2)O) in atmosphere, the minimum detectable concentration of 10.9 ppbV was achieved using a Herriott cell with the optical path length of 100 m.
Collapse
Affiliation(s)
- Zhensong Cao
- Laboratory of Atmospheric Optics of Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031, China
| | | | | | | | | | | | | |
Collapse
|
11
|
Saha S, Barry H, Hancock G, Ritchie GAD, Western CM. Rotational analysis of the 2ν5 band of formaldehyde. Mol Phys 2007. [DOI: 10.1080/00268970601126767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Toda K, Yoshioka KI, Mori K, Hirata S. Portable system for near-real time measurement of gaseous formaldehyde by means of parallel scrubber stopped-flow absorptiometry. Anal Chim Acta 2005. [DOI: 10.1016/j.aca.2004.08.070] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
13
|
Chen J, So S, Lee H, Fraser MP, Curl RF, Harman T, Tittel FK. Atmospheric formaldehyde monitoring in the Greater Houston area in 2002. APPLIED SPECTROSCOPY 2004; 58:243-7. [PMID: 17140485 DOI: 10.1366/000370204322843002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A laser spectrometer based on difference frequency generation (DFG) was deployed for real-time long-term monitoring of HCHO concentrations at an environmental monitoring site located at Deer Park, Texas, in the Greater Houston area. Three HCHO concentration measurements were made during the periods of July 20-31 (period I), August 2-14 (period II), and August 24-September 25 (period III), 2002. In periods I and II, differences in HCHO concentrations are apparent between day and night measurements, with elevated concentrations during daylight hours. Most of the HCHO peak values are less than 20 ppbV except for two intense peaks on August 02 (approximately 25 ppbV) and August 04 (approximately 30 ppbV). The formaldehyde concentration levels in ambient air at the measurement site are produced mainly by the photochemical oxidation of volatile organic compounds (VOCs) caused by intense sunlight during periods I and II. This observation was made based on a comparison with the ozone concentration, solar radiation, temperature, relative humidity, and wind speed data obtained from the Texas Commission on Environmental Quality (TCEQ). During period III, data collected by a time-integrating wet-chemical technique are compared to the data collected by the spectroscopic instrument.
Collapse
Affiliation(s)
- Jinhai Chen
- Department of Chemistry, Rice University, 6100 Main St., Houston, Texas 77005, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
|
15
|
Affiliation(s)
- R E Clement
- Laboratory Services Branch, Ontario Ministry of the Environment, Etobicoke, Canada
| | | |
Collapse
|
16
|
Richter D, Lancaster DG, Tittel FK. Development of an automated diode-laser-based multicomponent gas sensor. APPLIED OPTICS 2000; 39:4444-4450. [PMID: 11543548 DOI: 10.1364/ao.39.004444] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The implementation and application of a portable fiber-coupled trace-gas sensor for the detection of several trace gases, including CO2, CH4, and H2CO, are reported. This particular sensor is based on a cw fiber-amplified near-infrared (distributed Bragg reflector) diode laser and an external cavity diode laser that are frequency converted in a periodically poled lithium niobate crystal to the mid-IR spectroscopic fingerprint region (3.3-4.4 micrometers). A continuous absorption spectrum of CH4 and H2CO from 3.37 to 3.10 micrometers with a spectral resolution of 40 MHz (approximately 0.0013 cm-1) demonstrated the spectral performance that can be achieved by means of automated wavelength tuning and phase matching with stepper motor control. Autonomous long-term detection of ambient CO2 and CH4 over a 3- and 7-day period was also demonstrated.
Collapse
Affiliation(s)
- D Richter
- Rice Quantum Institute, Rice University, Houston, Texas 77251-1892, USA
| | | | | |
Collapse
|