1
|
S Barroso V, Geelmuyden A, Ajithkumar SC, Kent AJ, Weinfurtner S. Multiplexed digital holography for fluid surface profilometry. APPLIED OPTICS 2023; 62:7175-7184. [PMID: 37855573 DOI: 10.1364/ao.496937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 10/20/2023]
Abstract
Digital holography (DH) has been widely used for imaging and characterization of microstructures and nanostructures in materials science and biology and also has the potential to provide high-resolution, nondestructive measurement of fluid surfaces. DH setups capture the complex wavefronts of light scattered by an object or reflected from a surface, allowing the quantitative measurements of their shape and deformation. However, their use in fluid profilometry is scarce and has not been explored in much depth to the best of our knowledge. We present an alternative use for a DH setup that can measure and monitor the surface of fluid samples. Based on DH reflectometry, our modeling shows that multiple reflections from the sample and the reference interfere and generate multiple holograms of the sample, resulting in a multiplexed image of the wavefront. The individual interferograms can be isolated in the spatial frequency domain, and the fluid surface can be digitally reconstructed from them. We further show that this setup can be used to track changes in the surface of a fluid over time, such as during the formation and propagation of waves or the evaporation of surface layers.
Collapse
|
2
|
Meng Z, Ding L, Feng S, Xing F, Nie S, Ma J, Pedrini G, Yuan C. Numerical dark-field imaging using deep-learning. OPTICS EXPRESS 2020; 28:34266-34278. [PMID: 33182900 DOI: 10.1364/oe.401786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Dark-field microscopy is a powerful technique for enhancing the imaging resolution and contrast of small unstained samples. In this study, we report a method based on end-to-end convolutional neural network to reconstruct high-resolution dark-field images from low-resolution bright-field images. The relation between bright- and dark-field which was difficult to deduce theoretically can be obtained by training the corresponding network. The training data, namely the matched bright- and dark-field images of the same object view, are simultaneously obtained by a special designed multiplexed image system. Since the image registration work which is the key step in data preparation is not needed, the manual error can be largely avoided. After training, a high-resolution numerical dark-field image is generated from a conventional bright-field image as the input of this network. We validated the method by the resolution test target and quantitative analysis of the reconstructed numerical dark-field images of biological tissues. The experimental results show that the proposed learning-based method can realize the conversion from bright-field image to dark-field image, so that can efficiently achieve high-resolution numerical dark-field imaging. The proposed network is universal for different kinds of samples. In addition, we also verify that the proposed method has good anti-noise performance and is not affected by the unstable factors caused by experiment setup.
Collapse
|
3
|
Li S, Ma J, Chang C, Nie S, Feng S, Yuan C. Phase-shifting-free resolution enhancement in digital holographic microscopy under structured illumination. OPTICS EXPRESS 2018; 26:23572-23584. [PMID: 30184856 DOI: 10.1364/oe.26.023572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
In this paper, we present a phase-shifting-free method to improve the resolution of digital holographic microscopy (DHM) under the structured illumination (SI). The SI used in the system is different from the traditional SI for it is free of the visible structure due to two illumination lights with orthogonal polarization states. To separate the recorded information and also retrieve the object phase, two reference beams with different carrier frequencies and orthogonal polarization states are adopted. The principle component analysis (PCA) algorithm is introduced in the reconstruction process. It is found that the modulated frequency of SI besides the quadratic phases of the imaging system can be easily removed with help of PCA. Therefore, phase-shifting is not required both in recording and reconstruction process. The simulation is performed to validate our method, while the proposed method is applied to the resolution enhancement for amplitude-contrast and phase-contrast objects imaging in experiments. The resolution is doubled in the simulation, and it shows 78% resolution improvement in the experiments.
Collapse
|
4
|
Bedrossian M, El-Kholy M, Neamati D, Nadeau J. A machine learning algorithm for identifying and tracking bacteria in three dimensions using Digital Holographic Microscopy. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.1.36] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
5
|
Zheng J, Gao P, Shao X, Nienhaus GU. Refractive index measurement of suspended cells using opposed-view digital holographic microscopy. APPLIED OPTICS 2017; 56:9000-9005. [PMID: 29131185 DOI: 10.1364/ao.56.009000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/13/2017] [Indexed: 06/07/2023]
Abstract
Opposed-view digital holographic microscopy (OV-DHM) with autofocusing and out-of-focus background suppression was demonstrated and applied to measure the refractive index (RI) of suspended HeLa cells. In OV-DHM, a specimen is illuminated from two sides in a 4π-like configuration. The generated two opposite-view object waves, which have orthogonal polarization orientations, interfere with a common reference wave, and the generated holograms are recorded by a CMOS camera. The image plane of the sample was determined by finding the minimal variation between the two object waves. The out-of-focus background was suppressed by averaging the two object waves. Simultaneous determination of both the cell thickness and the phase retardation was avoided by using a spheroidal model for the detached cell obtained from confocal microscopy. Thus, the RI of suspended HeLa cells was measured from phase images of OV-DHM, with the thickness of the cells estimated by using a constant axial-to-lateral ratio. This measurement strategy reveals the RI with an accuracy of ∼10% of the RI difference between cells and surrounding medium.
Collapse
|
6
|
Han L, Cheng ZJ, Yang Y, Wang BY, Yue QY, Guo CS. Double-channel angular-multiplexing polarization holography with common-path and off-axis configuration. OPTICS EXPRESS 2017; 25:21877-21886. [PMID: 29041479 DOI: 10.1364/oe.25.021877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/21/2017] [Indexed: 06/07/2023]
Abstract
We propose a double-channel angular-multiplexing polarization holographic imaging system with common-path and off-axis configurations. In the system, its input plane is spatially divided into three windows: an object window and two reference windows, and two orthogonal linear polarizers are attached, respectively, on the two reference windows; a two-dimensional cross grating is inserted between the input and output planes of the system. Thus the object beam passing through the object window and the two orthogonal polarized reference beams passing through the two reference windows can overlap each other at the output plane of the system and form a double-channel angular-multiplexing polarization hologram (DC-AM-PH). Using this system, the complex amplitude distributions of two orthogonal polarized components from an object can be recorded and reconstructed by one single-shot DC-AM-PH at the same time. Theoretical analysis and experimental results demonstrated that the system can be used to measure the Jones matrix parameters of polarization-sensitive or birefringent materials.
Collapse
|
7
|
Zuo C, Sun J, Li J, Zhang J, Asundi A, Chen Q. High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci Rep 2017; 7:7654. [PMID: 28794472 PMCID: PMC5550517 DOI: 10.1038/s41598-017-06837-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 06/07/2017] [Indexed: 11/08/2022] Open
Abstract
For quantitative phase imaging (QPI) based on transport-of-intensity equation (TIE), partially coherent illumination provides speckle-free imaging, compatibility with brightfield microscopy, and transverse resolution beyond coherent diffraction limit. Unfortunately, in a conventional microscope with circular illumination aperture, partial coherence tends to diminish the phase contrast, exacerbating the inherent noise-to-resolution tradeoff in TIE imaging, resulting in strong low-frequency artifacts and compromised imaging resolution. Here, we demonstrate how these issues can be effectively addressed by replacing the conventional circular illumination aperture with an annular one. The matched annular illumination not only strongly boosts the phase contrast for low spatial frequencies, but significantly improves the practical imaging resolution to near the incoherent diffraction limit. By incorporating high-numerical aperture (NA) illumination as well as high-NA objective, it is shown, for the first time, that TIE phase imaging can achieve a transverse resolution up to 208 nm, corresponding to an effective NA of 2.66. Time-lapse imaging of in vitro Hela cells revealing cellular morphology and subcellular dynamics during cells mitosis and apoptosis is exemplified. Given its capability for high-resolution QPI as well as the compatibility with widely available brightfield microscopy hardware, the proposed approach is expected to be adopted by the wider biology and medicine community.
Collapse
Affiliation(s)
- Chao Zuo
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China.
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China.
| | - Jiasong Sun
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
| | - Jiaji Li
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
| | - Jialin Zhang
- Smart Computational Imaging (SCI) Laboratory, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China
| | - Anand Asundi
- Centre for Optical and Laser Engineering (COLE), School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qian Chen
- Jiangsu Key Laboratory of Spectral Imaging & Intelligent Sense, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, China.
| |
Collapse
|
8
|
Lyu M, Lin Z, Li G, Situ G. Fast modal decomposition for optical fibers using digital holography. Sci Rep 2017; 7:6556. [PMID: 28747685 PMCID: PMC5529422 DOI: 10.1038/s41598-017-06974-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
Eigenmode decomposition of the light field at the output end of optical fibers can provide fundamental insights into the nature of electromagnetic-wave propagation through the fibers. Here we present a fast and complete modal decomposition technique for step-index optical fibers. The proposed technique employs digital holography to measure the light field at the output end of the multimode optical fiber, and utilizes the modal orthonormal property of the basis modes to calculate the modal coefficients of each mode. Optical experiments were carried out to demonstrate the proposed decomposition technique, showing that this approach is fast, accurate and cost-effective.
Collapse
Affiliation(s)
- Meng Lyu
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiquan Lin
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guowei Li
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guohai Situ
- Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
9
|
Opposite-view digital holographic microscopy with autofocusing capability. Sci Rep 2017; 7:4255. [PMID: 28652591 PMCID: PMC5484697 DOI: 10.1038/s41598-017-04568-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/16/2017] [Indexed: 11/08/2022] Open
Abstract
Digital holographic microscopy (DHM) has its intrinsic ability to refocusing a sample by numerically propagating an object wave from its hologram plane to its image plane. In this paper opposite-view digital holographic microscopy (OV-DHM) is demonstrated for autofocusing, namely, digitally determining the location of the image plane, and refocusing the object wave without human intervention. In OV-DHM, a specimen is illuminated from two sides in a 4π-alike configuration, and two holograms are generated and recorded by a CCD camera along two orthogonal polarization orientations. The image plane of the sample is determined by finding the minimal variation between the two object waves, and consequently refocusing is performed by propagating the waves to the image plane. Furthermore, the field of view (FOV) of OV-DHM can be extended by combining the two object waves which have an angle in-between. The proposed technique also has the potential to reduce speckle noise and out-of-focus background.
Collapse
|
10
|
Lyu M, Yuan C, Li D, Situ G. Fast autofocusing in digital holography using the magnitude differential. APPLIED OPTICS 2017; 56:F152-F157. [PMID: 28463310 DOI: 10.1364/ao.56.00f152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Typical methods of automatic estimation of focusing in digital holography calculate every single reconstructed frame to get a critical function and then ascertain the focal plane by finding the extreme value of that function. Here, we propose a digital holographic autofocusing method that computes the focused distance using the first longitudinal difference of the magnitude of the reconstructed image. We demonstrate the proposed method with both numerical simulations and optical experiments of amplitude-contrast and phase-contrast objects. The results suggest that the proposed method performs better than other existing methods, in terms of applicability and computation efficiency, with potential applications in industrial and biomedical inspections where automatic focus tracking is necessary.
Collapse
|
11
|
Picazo-Bueno JÁ, Zalevsky Z, García J, Micó V. Superresolved spatially multiplexed interferometric microscopy. OPTICS LETTERS 2017; 42:927-930. [PMID: 28248333 DOI: 10.1364/ol.42.000927] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Superresolution capability by angular and time multiplexing is implemented onto a regular microscope. The technique, named superresolved spatially multiplexed interferometric microscopy (S2MIM), follows our previously reported SMIM technique [Opt. Express22, 14929 (2014)OPEXFF1094-408710.1364/OE.22.014929, J. Biomed. Opt.21, 106007 (2016)JBOPFO1083-366810.1117/1.JBO.21.10.106007] improved with superresolved imaging. All together, S2MIM updates a commercially available non-holographic microscope into a superresolved holographic one. Validation is presented for an Olympus BX-60 upright microscope with resolution test targets.
Collapse
|
12
|
Zhang J, Ma C, Dai S, Di J, Li Y, Xi T, Zhao J. Transmission and total internal reflection integrated digital holographic microscopy. OPTICS LETTERS 2016; 41:3844-3847. [PMID: 27519104 DOI: 10.1364/ol.41.003844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We develop a transmission and total internal reflection (TIR) integrated digital holographic microscopy (DHM) by introducing a home-made Dove prism with a polished short side. With the help of angular and polarization multiplexing techniques, the 2D refractive index distribution of a specimen adhered on the prism surface is determined using TIR-DHM. Meanwhile, the thickness profile is unambiguously calculated from the phase information using transmission DHM. This integrated microscopy is nondestructive and dynamic and can be used to simultaneously measure the index distribution and thickness profile of transparent or semi-transparent liquid or solid samples.
Collapse
|
13
|
Wang Z, Jiang Z, Chen Y. Single-shot dual-wavelength phase reconstruction in off-axis digital holography with polarization-multiplexing transmission. APPLIED OPTICS 2016; 55:6072-6078. [PMID: 27505390 DOI: 10.1364/ao.55.006072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A new system for single-shot dual-wavelength digital holographic microscopy with polarization-multiplexing path-shared transmission is presented. The key feature of the optical configuration is that the interference waves of two wavelengths having orthogonal polarization can transmit in the same interferometer paths at the same time, and two polarizers orthogonal to each other are placed in front of the CCD to realize single-shot recording of two holograms. The correlative filtering algorithm of the spatial-frequency spectrum for dual-wavelength digital holograms is reliable and efficient in the dual-wavelength path-shared configuration. The phase reconstruction in dual-wavelength digital holographic imaging is achieved by using this filtering algorithm. The experiment results of phase reconstruction of a groove grating demonstrate the reliability and validity of this optical configuration and the correlative filtering algorithm. This polarization-multiplexing configuration for dual-wavelength digital holography is compact and has more flexibility for the replacement of different-wavelength lasers.
Collapse
|
14
|
Wang N, Kobayashi T. Polarization modulation for fluorescence emission difference microscopy. OPTICS EXPRESS 2015; 23:13704-13712. [PMID: 26074619 DOI: 10.1364/oe.23.013704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Effects of the polarization on subtracted images in fluorescence emission difference microscopy are numerically investigated based on vector beam diffraction theory and alteration of Jones matrices. Parameters of resolution, signal loss, and amplitude of negative sidebands after subtraction are discussed along with the polarization of excitation beams and sample sizes. The effects of polarization on the ellipticity and subtraction threshold are also given.
Collapse
|
15
|
Sánchez-Ortiga E, Martínez-Corral M, Saavedra G, Garcia-Sucerquia J. Enhancing spatial resolution in digital holographic microscopy by biprism structured illumination. OPTICS LETTERS 2014; 39:2086-2089. [PMID: 24686681 DOI: 10.1364/ol.39.002086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel and efficient architecture of a structured-illumination digital holographic microscope (DHM) is presented. As the DHM operates at the diffraction limit, its spatial resolution on label-free imaging of transparent samples is improved by illuminating the sample with a structured illumination produced by a Fresnel's biprism. The theoretical analysis of the method forecasts a twofold improvement of the spatial resolution. The proposed method requires only two images to improve the spatial resolution, which eases the process of unmixing the high-resolution components by means of an unknown phase-shift procedure. Numerical modeling and experimental results validate the theoretical findings.
Collapse
|
16
|
Gao P, Pedrini G, Osten W. Phase retrieval with resolution enhancement by using structured illumination. OPTICS LETTERS 2013; 38:5204-5207. [PMID: 24322218 DOI: 10.1364/ol.38.005204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this Letter, we present referenceless phase retrieval methods with resolution enhancement. Structured illuminations with different orientations and phase shifts are generated by a spatial light modulator and are used to illuminate the specimen. The generated diffraction patterns are recorded by a CCD camera, and the phase of the wavefront is reconstructed from these patterns.
Collapse
|
17
|
Gao P, Pedrini G, Osten W. Structured illumination for resolution enhancement and autofocusing in digital holographic microscopy. OPTICS LETTERS 2013; 38:1328-30. [PMID: 23595474 DOI: 10.1364/ol.38.001328] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In this Letter we show how resolution enhancement and autofocusing in digital holographic microscopy is obtained by using structured illumination generated by a spatial light modulator, which enables it to project fringes of different orientations and phase shift without mechanical movement. The image plane is numerically determined by searching for the minimal deviation between the reconstructed images carried by different diffraction orders of the structured illuminations.
Collapse
Affiliation(s)
- Peng Gao
- Institut für Technische Optik, Universität Stuttgart, Pfaffenwaldring 9, Stuttgart 70569, Germany. ‑stuttgart.de
| | | | | |
Collapse
|
18
|
Claus D, Iliescu D, Rodenburg JM. Coherence requirement in digital holography. APPLIED OPTICS 2013; 52:A326-A335. [PMID: 23292409 DOI: 10.1364/ao.52.00a326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/24/2012] [Indexed: 06/01/2023]
Abstract
In this paper the coherence requirement for different holographic setups (Fresnel hologram, Fourier hologram, and image-plane hologram) is compared. This analysis is based on the investigation of the recorded interference pattern from the superposition of reference wave and object wave in in-line and off-axis mode. The outcome of this investigation can support the choice of light source needed for certain digital holographic setups, as well as the selection of the best applicable setup to take advantage of new short coherence light sources. Moreover, as a byproduct of this investigation, the minimum required recording distance (focal length) to enable Nyquist sampling of the recorded hologram is obtained.
Collapse
Affiliation(s)
- Daniel Claus
- Kroto Research Centre, University of Sheffield, Sheffield S3 7HQ, UK.
| | | | | |
Collapse
|
19
|
Ma Z, Yang Y, Zhai H, Chavel P. Spatial angular multiplexing for enlarging the detected area in off-axis digital holography. OPTICS LETTERS 2013; 38:49-51. [PMID: 23282834 DOI: 10.1364/ol.38.000049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In off-axis digital holography, e.g., for detecting and imaging ultrafast phenomena, the interference region is confined to a limited region due to the short extent of the light pulse along the propagation axis. Therefore, the detected area of the object wavefront is limited. A recording method for enlarging the detected area in the above case is proposed in this Letter, in which multiple interferences between the object and the reference waves are obtained by spatial angular multiplexing. Experimental results demonstrate the validity of this method.
Collapse
Affiliation(s)
- Zhonghong Ma
- Institute of Modern Optics, Nankai University, Tianjin 300071, China
| | | | | | | |
Collapse
|
20
|
Calabuig A, Garcia J, Ferreira C, Zalevsky Z, Micó V. Resolution improvement by single-exposure superresolved interferometric microscopy with a monochrome sensor. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2011; 28:2346-2358. [PMID: 22048303 DOI: 10.1364/josaa.28.002346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Single-exposure superresolved interferometric microscopy (SESRIM) by RGB multiplexing has recently been proposed as a way to achieve one-dimensional superresolved imaging in digital holographic microscopy by a single-color CCD snapshot [Opt. Lett. 36, 885 (2011)]. Here we provide the mathematical basis for the operating principle of SESRIM, while we also present a different experimental configuration where the color CCD camera is replaced by a monochrome (B&W) CCD camera. To maintain the single-exposure working principle, the object field of view (FOV) is restricted and the holographic recording is based on image-plane wavelength-dispersion spatial multiplexing to separately record the three bandpass images. Moreover, a two-dimensional extension is presented by considering two options: time multiplexing and selective angular multiplexing. And as an additional implementation, the FOV restriction is eliminated by varying the angle between the three reference beams in the interferometric recording. Experimental results are reported for all of the above-mentioned cases.
Collapse
|
21
|
Calabuig A, Micó V, Garcia J, Zalevsky Z, Ferreira C. Single-exposure super-resolved interferometric microscopy by red-green-blue multiplexing. OPTICS LETTERS 2011; 36:885-887. [PMID: 21403717 DOI: 10.1364/ol.36.000885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present single-exposure super-resolved interferometric microscopy (SESRIM) as a novel approach capable of providing one-dimensional (1-D) super-resolution (SR) imaging in holographic microscopy using a single illumination shot. The single-exposure SR working principle is achieved by combining angular and wavelength multiplexing incoming from a set of tilted beams with different wavelengths where each wavelength is tuned with the red-green-blue (RGB) channels of a color CCD. Thus, the information included in each color channel is retrieved by holographic recording using a single-color CCD capture and by analyzing the RGB channels. Finally, 1-D SR imaging is obtained after the digital postprocessing stage yielding the generation of a synthetic aperture. Experimental results are reported validating the proposed SESRIM approach while an extension of the proposed approach to the two-dimensional case is considered.
Collapse
|